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Nomenclature

English Letter Symbols

A

B

C
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C1
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D

E
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I

I

1

k

k +

kt

P

Pr

Prt

Preff

= empirical model constant for Schmidt's FT'M transition model

= empirical model constant for Schmidfs PTM transition model

= specific heat at constant pressure

= work - energy conversion constant

= local friction coefficient, Xw/(peUe 2")

= work - energy conversion constant

= empirical constant for turbulent viscosity calculation

= empirical constant for TDR transport equation

= empirical constant for TDR transport equation

= low-Reynolds number term for TKE equation

= low-Reynolds number term for TDR equation

= damping function used in tm'bulent viscosity calculation

= damping function for TDR transport equation

= damping function for TDR transport equation

= force - mass conversion constant

= instantaneous stagnation enthalpy

= mean stagnation enthalpy

= fluctuating stagnation enthalpy

= turbulent kinetic energy (TKE), 0.5 ( u' 2+v' 2+w'2 }, or laminar

(molecular) thermal conductivity

= nondimensional turbulent kinetic energy, k/ux2

= turbulent thermal conductivity

= thermodynamic pressure

= Prandtl number

= turbulent Prandtl number

= effective Prandtl number, see Eq. (2.33)
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Rex

S

St

Sk

St

Sk+

St +

T

Tu

U

U

U,t

V

V

v

X

Y

y+

= molecular heat flux

= molecular heat flux per unit area

= momentum Reynolds number, Ue52A'

= turbulent Reynolds number, k2 / { v_ )

= x-Reynolds number, UexA'

= local Reynolds number, ( u_y ) / v = y+

= turbine blade wetted surface distance

= Stanton number, h/(Uepc)

= Summation of the TKE equation source terms, see Eq. (4.8)

= Summation of the TDR equation source terms, see Eq. (4.9)

= Nondimensional Sk. SkV/Ux4

= Nondimensional SE, Scv2/u_ 6

= temperature

= turbulence intensity, 1/Ue (1/3 (U'U'+ v'v'+ w'w')) 0"5

= instantaneous streamwise velocity component (x-direction)

= mean streamwise velocity component (x-direction)

= fluctuating streamwise velocity component (x-direction)

= shear velocity, [(g,:'tw) / pw]°'5

= instantaneous cross-stream velocity component (y-direction)

= mean cross-stream velocity component (y-direction)

= fluctuating cross-stream velocity component (y-direction)

= streamwise coordinate

= cross-stream coordinate

= nondimensional y-distance from a wall for turbulent shear layers

Greek Letter Symbols

O_ = molecular thermal diffusivity, or empirical model constant for The

University of Texas transition model

= empirical model constant for The University of Texas transition
model
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A = thickness of thermal boundary layer

8 = thickness of mon_ntum boundary layer

82 = momentum thickness of the botmdary layer

Ski -- kronecker delta

= nonisotropic turbulent dissipation rate, -I.t_

= isotropic turbulent dissipation rate (TDR), -la_yu'_yu'

EH = eddy diffusivity for heat transfer

ei = eddy diffusivity for momentum

e+ = nondimensionaI turbulent dissipation rate, fv/u 4

V. = dynamic viscosity

_tt = turbulent viscosity

_ff = effective viscosity, 12+ _tt

v = kinematic viscosity

vt = turbulent viscosity, _tt / p

[3 = fluid density

at = empirical constant for the TDR transport equation

ok = empirical constant for the TKE transport equation

Oki = stress tensor

Subscripts

C = critical value

e = freestream location

E = end of transition

f = far-field location

S = start of transition
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Chapter 1

Literature Review

1.0 Introduction

Gas turbine engine design has changed drastically in recent years in the

quest to improve engine efficiency and increase power output levels. The devel-

opment of a more efficient gas turbine is directly linked to an increase in the turbine

inlet temperature. As the gas turbine inlet temperature rises, so does the turbine ef-

ficiency and power output. However, there is a penalty for increasing the inlet

temperature, namely the ability to protect the turbine blades from the high tempera-

ture environment. This issue becomes an important design consideration.

Accurate prediction of the gas side heat transfer between the hot mainstream

gases and the turbine blade surface has proved to be difficult and unreliable. Pre-

diction of the developing boundary layer from the blade stagnation point, to a de-

veloping laminar boundary layer, through transition, and finally to a fully turbulent

boundary layer is integral to predicting the blade heat transfer. High heating rates

on a gas turbine blade occur in the stagnation region and at the end of the transition

region. Since engineers design the shape of turbine blades and the resulting stag-

nation point location, the thermal protection required in this region can be assessed.

On the other hand, the complex nature of the transition process and the failure of

mathematical models to simulate this process often leads to an over-design of the

thermal protection needed by the turbine blade.

The original objective of this thesis was to assess two transition models

using a two-dimensional boundary layer code, TEXSTAN. In particular, the re-

search was to focus on transition models developed at the University of Minnesota

and The University of Texas at Austin as applied to the K. Y. Chien [1982] two-

1



equationturbulencemodelto assesstheir transitionsimulationcapabilities.Thisre-

searchalsofocuseson theinitial andboundaryconditioncharacteristicsrequiredto

accuratelysimulatetransition.Theresultsof thisresearchhaveledto identification

of amajorshortcomingin theuseof thebasicK. Y. Chienturbulencemodelfor
low-Reynoldsnumberflows.

1.1 Gas Turbine Environment and Numerical Simulation

Difficulties

This section is an overview of the environmental conditions modeled by

numerical simulations that calculate the heat transfer distribution on turbine blades.

The quest for improved turbine efficiency has pushed the turbine inlet temperatures

past the melting point of turbine blade materials, resulting in a need to design ade-

quate blade cooling systems based on accurate turbine blade heat transfer distribu-

tions. The building of experimental turbine blades to measure heat transfer distri-

butions has become so cosily and time consuming that a need for accurate numeri-

cal modeling of turbine blade heat transfer has become a must. With improvements

in numerical schemes and computational ability, the need for experimental mea-

surements will decrease; however, current agreement between experimental and

numerical heat transfer predictions on turbine blades has not been consistent, espe-

cially in the transition region of the blades.

Figure 1.1 shows a schematic of the basic components for a propulsion gas

turbine engine. Air enters the gas turbine and is compressed by an axial flow com-

pressor, which increases the air pressure. At the end of this process, the air enters

a combustion chamber where fuel is injected and burned at essentially constant

pressure. The products of combustion are then diluted to control the gas tempera-

ture and then expanded through a turbine. Here change in the axial momentum of

the combustion gases is convened to a torque on the turbine rotor, hence the fluid

work is extracted through the rotor to drive the compressor. Turbine inlet gas tem-
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peraturesfrom thecombustionchamberaretypicallyon the order of 2500°F

(1370°C) and at a pressure of !5 - 25 atmospheres. The combustion gases are in a

highly turbulent state with the turbulence levels being in the range of 10% to 20%

or more.

Combustion Chamber

I I

I |

Air Exhaust

Intake

Figure 1.1. Schematic of a gas turbine engine.

The turbine section consists of one or more stages, each containing a row of

stationary turbine blades, called stators or nozzle guide vanes, and a row of rotating

blades, called buckets or rotor blades. Figure 1.2 shows a typical turbine blade.

The upper and lower contour of a turbine blade are different; therefore, the flow

characteristics around each side of a turbine blade are different. The upper surface

of a turbine blade is typically called the "suction" or "convex" surface, because of

the higher flow acceleration and resulting lower pressure distribution. The lower

surface of a turbine blade is typically called the "pressure" or "concave" surface,

because of the lower flow acceleration and resulting higher pressure distribution.

The incoming flow from the combustion chamber is guided by the f'trst-stage stator

to the rotor blades where the flow around the rotor blades produces a torque about

the rotor shaft. On each blade there exists a stagnation point where a line drawn



Suction

Surface

Point

Pressure

Surface

Figure 1.2. Turbine blade nomenclature.
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normal to the surface is exactly parallel to the approaching flow. It is from the

stagnation point where the thin viscous region, known as the boundary layer, de-

velops and grows over the pressure and suction surfaces. Outside the boundary

layer the flow field is considered irrotational and thus inviscid.

The flow field over a turbine blade is complex and three-dimensional in na-

ture. However, the three-dimensional effects may be considered secondary in the

midspan region if the blade aspect ratio is not too small. A blade aspect ratio is the

ratio of the blade length to the midspan chord and is a measure of the influence

endwali and/or tip effects may have on the midspan region. Endwall heat transfer

on turbine blades is strongly three-dimensional and not amenable to a two-dimen-

sional numerical simulation. However, with a large aspect ratio, the flow field may

be considered two-dimensional over the midspan of the blade.

Boundary layer development on a typical turbine blade is influenced by

many mechanisms, and their effects on turbine heat transfer distribution are often

not fully understood. Some of the mechanisms which influence boundary layer

development include:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

laminar, transitional, and turbulent flows

high freestream turbulence

effects of adverse and favorable pressure gradients

stagnation flow with freestream turbulence

curvature effects

body force effects due to blade rotation

variable property effects

surface roughness

endwall effects

flow unsteadiness and periodicity



Extensiveresearchis currentlybeingconductedtodeterminetheroleeachof the

above influences plays in the development of the turbine blade boundary layer.

Typical two-dimensional boundary layer computer codes can incorporate models to

account for a number of the boundary layer influences listed above. However,

despite additional models, acceptable accuracy in boundary layer predictions has

not been attained. Discussions by Graham [1979] and Hylton et al. [1983] offer

further review of the above influences affecting turbine blade boundary layer

development. Tani [1969] provides a discussion on the factors that influence

transition.

1.2 Overview of Turbulence Modeling

The purpose of this section is to acquaint the reader to the different methods

of numerically modeling turbulent flow. The modeling of transition requires a nu-

merical code to have the capability of modeling both laminar and fully turbulent

boundary layer development. The numerical prediction of laminar boundary layer

characteristics without disturbances is well documented and is relatively easy to

verify. On the other hand, numerical schemes to predict fully turbulent boundary

layer characteristics are numerous and the prediction capability of each method is

subject to debate. This brief overview of the various turbulence models will help

explain the theory behind two-equation turbulence models, which are used in this

thesis.

There are a variety of turbulence models with an increase in computational

effort and complexity associated with the more general models. Rodi [ 1982] pro-

vides an excellent overview on the different aspects of the various turbulence mod-

els, Other reviews of turbulence modeling include Hirata et al. [ 1982] and

Lakshminarayana [1986]. Turbulence models are so abundant that many of them

have not been adequately tested against experimental data to determine under which



flow conditionsthemodelsmaynotbeaccurate.Turbulencemodelsaregenerally

classifiedasfollowsaccordingto increasingcomplexity,

(1)

(2)
(3)

(4)

(5)

(6)

(7)

Zero-equationmodel(e.g.mixing lengthmodelor algebraicmodel)

One-equationmodel(e.g.thek model)
Two-equationmodel(e.g.thek-_:model)

Full Reynoldsstress(FRS)model
AlgebraicReynoldsstress(ARS)model

Large eddy simulation (LES) model

Direct simulation

Despite the advances of directly solving the time-dependent full Navier-Stokes

equations or solving the equations using a LES model, the only economically feasi-

ble way to solve high Reynolds number turbulent flow problems with complex

geometr)' is the use of statistically averaged equations governing the mean-flow

quantities [Rodi, 1982].

The governing equations describing the turbulent boundary layer are pre-

sented in Chapter 2, but for discussion purposes the basic numerical approach for

most turbulent boundary layer computer codes is to solve the time-averaged gov-

erning equations. When the two-dimensional instantaneous x-momentum bound-

ary layer equation is time-averaged, two new convective terms arise, pu'u' and

9u v. These are called turbulent Reynolds stresses. The first term, a normal

Reynolds stress, is either considered negligible or lumped with the pressure gradi-

ent. The second term, appearing as a y-gradient, is moved from the convective side

of the equation to the diffusive side where it adds to the viscous shear stress. The

presence of the turbulent Reynolds stress is an additional unknown leading to the

turbulence closure problem. A turbulence model is needed to describe the

Reynolds stress before the boundary layer equations may be solved.



TheBoussinesq[1877]assumptionis traditionallyusedto relatetheturbu-

lentstressesto themeanvelocitygradientthroughtheuseof aturbulentviscosity,
calledmeanfield closure(MFC),

_U
- uv = vt Oy , (1.1)

wheretheproportionalityconstant,vt, is calledtheturbulentviscosity. Theturbu-

lent viscosityis notafluid property,butdependson theturbulencein theflow and

henceisa functionof positionandupstreamhistoryof theflow development.It is

apparentfrom equation(1.1) thattheclosureproblemreducesto describingthetur-
bulenceviscosity.

TheoldestandsimplestMFC modelwasdevelopedby Prandtl[1925]and

termedazero-equationturbulencemodel. Prandtlproposedthattheturbulentvis-

cositydistributionmaybecalculatedbyrelatingvt to thelocalmeanvelocity
gradient

= , (1.2)

where1m is the mixing length. Prandtl reasoned that in the near-wall region the

only significant length dimension is the distance from the wall, and thus it is rea-

sonable to assume 1m is proportional to y. However, very near a wall, 1m changes

in a non-linear manner, and far away from the wall, lm becomes independent of y.

One popular model for describing Im is the Van Driest model described in

Kays and Crawford [ 1980]. The Van Driest model describes the single unknown

parameter, Ira, over the flow field by the following empirical formulas,

y*))lm= 1 - exp(- _7 for 0.0 < y+ _<_-_ (1.3)



and

lm = _.5 for y+> h___, (1.4)
K

where K is the Von Karman constant equal to 0.41, A ÷ is the Van Driest damping

function equal to 25.0 for zero pressure gradients, _. is the outer layer constant

equal to 0.085, and _5is the boundary layer thickness. There exists a large amount

of experimental data gathered which may be used to empirically obtain lm.

For all its simplicity, the zero-equation turbulence model has some disad-

vantages. First, the zero-equation model assumes the flow is in local equilibrium,

that is, at each point in the flow the turbulent energy is dissipated at the same rate it

is produced. As a result, there cannot be any influence of turbulence production on

other parts of the flow or at earlier times. This means the zero-equation model can-

not account for the transport and history effects of turbulence. The second problem

of zero-equation models is that buoyancy, rotation, or streamline curvature effects

must be defined by a mixing length distribution, other than specified by equations

(1.3) and (1.4), which are often difficult to develop. This applies equally to

complex turbulent flows. Even with these limitations, the zero-equation turbulence

model is used quite often to approximate a turbulent flow field.

To obtain more general turbulence models that account for history and

transport effects, higher-order turbulence models were developed, such as one- and

two-equation models. These higher order turbulence models solve additional trans-

port equations for turbulence quantities. The additional transport equations all

adhere to the same basic form linking convection of the quantity under considera-

tion to laminar and turbulent diffusion and to the positive and negative source of the

quantities.

Convection = Diffusion + Sources. (1.5)



10

Theseadditionalturbulencequantifiesareusedto improvethepredictionof thetur-

bulentviscosity.

Theone-equationturbulencemodelattemptsto incorporatethehistoryand
transporteffectsof turbulence.Froma dimensionalpoint of view, theturbulent

viscositymaybethoughtof asacombinationof aturbulentvelocity scale,Vt,char-

acteristicof thefluctuatingvelocities,andaturbulentlengthscale,Lt, characteristic

of largeturbulenteddies

vt _ VtLt. (1.6)

Theone-equationmodelusesatransportequationto modelthevelocityscaleof the
turbulentmotion. Thevelocityscaleis definedasq_, where k is the kinetic energy

of the turbulent motion and is a measure of the intensity of the three-dimensional

turbulent fluctuations. The governing equation for k describes the transport of k in

a turbulent flow. Utilizing tensor notation with repeated indicies indicating sum-

mation, the governing equation for k is written in the form of equation (1.5) as

follows

Dk _ _..___/vt_k I °_Ui

Dt bXilO k _Xi]" uiuj _Xj " E,

I II III IV

(1.7)

where I is the convection of k; II is the diffusion of k; III is the production of k, Pk,

which represents a positive source term; and IV is the dissipation of k, which rep-

resents a negative source term. The rate coefficient (v t /_k) represents the turbulent

diffusion coefficient for the diffusion of k.

In this one-equation model, the turbulent dissipation rate is a measure of the

destruction of k and must be specified. The turbulent dissipation rate is defined by

dimensional considerations that link it to a turbulence length scale, L
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(1.8)

whereCDisanempiricalconstantof proportionalityfor high-Reynoldsnumber

turbulence.Theturbulentviscosityfor aone-equationmodelis thendefinedfol-

lowing equation(1.6)as

v, = C'.¢ZL, (1.9)

where C'_t is the empirical constant of proportionality for high-Reynolds number

turbulence. Specification of the turbulent length scale is similar to the mixing

length scale defined in equations (1.3) and (1.4). An empirical specification of L

works well for simple shear layers as demonstrated by work in Bradshaw et al.

[1967] and by Hassid and Poreh [1975].

As with the zero-equation turbulence model, the one-equation turbulence

model also has some disadvantages. For complex turbulent shear flows the speci-

fication of an empirical function for L is no easier to specify than it is for the mixing

length, lm. The governing transport equation for k (equation 1.7) and the empirical

constants, CD and C'_, were developed for high-Reynolds number flows where the

ratio of vt to v is large. Therefore, in the near-wall region where the local turbulent

Reynolds number is low, the constants of the model become functionals. Low-

Reynolds number one-equation models have been developed and work well for

zero and adverse pressure gradient flows, but generally have problems with

strongly accelerated boundary layers. Besides the turbulent velocity scale, the tur-

bulent length scale is also subject to history and transport effects which are not ac-

counted for by the one-equation turbulence model. Due to the aforementioned

problems, the recent trend has been to use two-equation turbulence models that cal-

culate a length scale from another turbulent transport equation.
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Thetwo-equationturbulencemodelutilizestransportequationsfor theve-

locity andlengthor timescalesof turbulentmotionto accountfor historyandtrans-
porteffectsof turbulence.A populartwo-equationmodelis thek-eturbulence
model,in whichthelengthscaleisconstructedfrom acombinationof k ande. The

turbulentlengthscalefor k-emodelsisdefinedbydimensionalconsiderationsas

L = kt'_ (1.10)
£

This lengthscaleis usedin conjunctionwithequation(1.6) tocalculatetheturbu-
lent viscosityatanypointin theboundarylayer. Thustheseconddifferential
transportequationis thatfor e.

Other classes of two-equation models exist in which the second variable is

fluctuating vorticity (often termed k-o_ turbulence models) or some other turbu-

lence variable. The ability to relate the turbulent dissipation rate to vorticity is not

discussed in this section, but examples of k-off- models include Saffman [ 1970],

Saffman and Wilcox [1974], Wilcox and Traci [1976], and Wilcox and Rubesin

11980].

A two-equation k-e model uses equation (1.7) to calculate the velocity scale

of the boundary layer. The dissipation, e, is calculated using a differential transport

equation defined as

I II III IV

(1.11)

where I is the convection of e; II is the diffusion of e; III is the production of e,

which represents a positive source term; and IV is the dissipation of e, which repre-

sents a negative source term. The rate coefficient (vt/erE) represents the turbulent
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diffusion coefficientfor thediffusionof e, while C1 and C2 are turbulent model

constants.

The terms in equation (1.11) are similar to the terms of equation (1.7).

Equations (1.7) and (1.11) constitute the high-Reynolds number (HRN) form of

the two-equation models and thus require the use of wall functions to calculate

through the buffer and viscous sublayers in the near-wall region. Jones and

Launder [1972, 1973] proposed a low-Reynolds number (LRN) form of k-e tur-

bulence model that allowed continuous numerical calculations from the freestream

down to the wall. The Jones and Launder LRN two-equation turbulence model has

additional terms on the right-hand side of equations (1.7) and (1.11) to allow the e

wall boundary condition to be set to zero and to improve the match between the

numerical peak level of turbulent kinetic energy and experiment. Since Jones and

Launder's original proposal, a large variety of LRN two-equation turbulence mod-

els have been presented in the open literature. Examples of the different LRN two-

equation models include Launder and Sharrna [1974], Reynolds [1976], Lain and

Bremhorst [1981], K. Y. Chien [1982], and Nagano and Hishida [1987]. In an

attempt to evaluate the performance of several two-equation models, Patel et al.

[1985] systematically examined eight two-equation models for their prediction ca-

pability over a variety of flows. They concluded that the two-equation models of

Launder and Sharma [1974], K. Y. Chien [1982], Lam and Bremhorst [1981], and

Wilcox and Rubesin [1980] performed better than the other models for the turbulent

flows considered.

One limitation to the k-e turbulence model is the assumption that the turbu-

lent viscosity is isotropic, implying the Reynolds stresses are uniform in all direc-

tions. Relating the Reynolds stresses to one velocity scale and length scale for all

directions is a weakness of the two-equation model. In complex turbulent shear

flows, the individual Reynolds stresses develop quite differently depending on the

location in the flow. The turbulence models discussed so far can not account for

the nonisotropic nature of Reynolds stresses. To account for the different devel-
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opmentof eachReynoldsstress,atransportequationfor eachcomponentof the

Reynoldsstresstensormaybeformulated.This is thefoundationfor aReynolds
stressturbulencemodel.

In general,therearesix componentsof Reynoldsstress,definedin tensor
--'7""7

notation as puiuj. Turbulence models that solve transport equations for each

component of the Reynolds stress tensor without approximations are called full

Reynolds stress (FRS) models or second-moment closure schemes. The transport

equation for each Reynolds stress component in tensor notation [Markatos, 1987]

may be written as

Dl_iuj _ Pi.j + I-Iij + Dij - Eij , (1.12)
Dt

where Pij is the Reynolds stress production tensor; Flij is the pressure strain

"redistribution tensor;" Dij is the diffusion tensor; and eij is the viscous dissipation

tensor. Launder [1984] provides a very detailed derivation for equation (1.12) and

the use of FRS models in general. In using a FRS model, a constitutive equation

for calculating the turbulent Reynolds stresses is not required because the Reynolds

stresses are directly solved by the set of equations similar to equation (1.12). One

difficulty in using a FRS model is the lack of information concerning the functional

forms of the various terms of equation (1.12). This lack of information is prevalent

in the near-wall region, the boundary conditions, and the initial profiles for each

Reynolds stress component. FRS models are rather complex and computationally

expensive, therefore they are not well suited for practical applications.

The solution to each Reynolds stress transport equation is not easy and re-

quires considerable computer time and expense. However, it would be desirable to

simplify the Reynolds stress equations as much as possible for computation capa-

bility, but still retain accurate predictions. For this reason, the algebraic Reynolds

stress (ARS) model was developed to reduce the differential transport equations for

Reynolds stress into algebraic expressions that still retain the characteristics of the
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differentialterms.Theconvectionanddiffusiontermsmakethetransportequations

differentialequations,hencewhenthesetermsareeliminatedbymodelapproxima-

tions,thedifferentialequationscanbeconvertedintoalgebraicexpressions.Rodi

[1976]proposedthetransportof u'iui asproportionalto thetransportof k with the

proportionalityfactorbeingtheratiou'iuj/k,which is notconsideredaconstant.By

assumingu'iuj proportionalto k, thesourcetermsof theReynoldsstresstransport

equationsbecomeproportionalto thesourcetermsof thek-equation.Theactual

ARSmodelequationandadetaileddiscussiononARSmodelingarepresentedby
Rodi [1980]andLakshminarayana[1986]. Sincek and_ appearin theARSmodel

equations,ak-eturbulencemodelmustbesolvedin orderto completethemodel.

It maybeconsideredthatthealgebraicexpressionsof theARSmodelcoupledwith
thek ande equations form an extended k-e model. ARS models simulate the tur-

bulent stresses more realistically because the isotropic stress assumption, associated

with two-equation models, has been eliminated and each Reynolds stress may be

calculated based on the local conditions. The ARS model is computationally inex-

pensive and can directly account for the effects of buoyancy, rotation, streamline

curvature, nonisotropic strain fields, and wall-damping influences directly instead

of through modeling.

One type of turbulence model that has just recently begun to produce sig-

nificant results are large-eddy simulation (LES) models. These models solve the

three-dimensional time-dependent full Navier-Stokes equations for the large-scale

turbulence, but use models for the smallest scales, which are difficult to compute at

high turbulent Reynolds numbers. In general, higher-order statistical properties,

such as Reynolds stress and turbulent heat flux, take longer to numerically reach

steady state than lower order terms, such as k and c. The LES model truncates

time-dependent computations at small scales, to ensure a converged solution, and

models the smaller scales based on the fact that smaller scales adjust faster to

changes in local conditions. Recent work with LES models has been able to simu-

late the main features of turbulent flow experiments.
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Thef'malturbulencepredictionmethodconsideredis direct simulation. This

technique involves the direct solution of the time-dependent full Navier-Stokes

equations without the use of any models. Since supercomputers have recently be-

come available, direct simulation has begun to make contributions to predicting

some flows, but still requires tremendous computational efforts. The simulation

capability is restricted to low-Reynolds number flows because for fully developed

high-Reynolds number turbulent flow the range of eddy sizes, i.e. scales, is too

great to be calculated on any computer.

1.3 Overview of Numerical Transition Studies

This section outlines various numerical transition studies from the open lit-

erature that report prediction of heat transfer and friction distributions for various

geometries. The use of zero-equation and one-equation turbulence models to sim-

ulate transition is briefly outlined. However, the major emphasis is on the use of

the two-equation turbulence model to predict boundary layer transition.

One of the first investigations into describing the onset of transition was

conducted by Emmons [1953]. While observing flow in a water-table, Emmons

noted the creation of tiny spots of turbulent flow emanating from point sources in

an otherwise laminar boundary layer. The turbulent spots grew as they were swept

downstream and eventually coalesced into a fully turbulent boundary layer. From

these observations, Emmons proposed that transitions from laminar to turbulent

flow occur through the creation, growth, and coalescence of turbulent spots.

Therefore, at any location downstream of a point source the flow will be intermit-

tently turbulent; that is, the location will be laminar except during the time which a

turbulent spot is convected over it. Emmons analytically described transition as a

random phenomena, which can be described by a probability function specifying

the fraction of time that the flow at each point is turbulent. This probability func-

q,
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tion is called the intermittency factor, ]', which represents the fraction of time any

point spends in turbulent flow. Riley and Gad-el-Hak [1985] have compiled an

outline of the present knowledge of turbulent spots including detailed flow-

visualization.

Dhawan and Narasimha [1958] developed an expression for a universal in-

termittency distribution for transitional flow based on Emmons' work. Several

transition models, called intermittency models, have been developed from Dhawan

and Narasimha's universal intermittency expression. Basically, an intermittency

model modifies the magnitude of the turbulent viscosity (i.e.l._ff = l.t + '_t) from a

fully laminar flow (y = 0) to a fully turbulent flow (_/= 1). By modifying the tur-

bulent viscosity, the intermittency model controls the path of the transition process.

To use an intermittency model other empirical correlations must be used to estimate

the starting location of transition and the length of the transition region. Intermit-

tency models have been used with zero-equation to two-equation turbulence models

in an attempt to simulate transition; however, the resulting predictions are only as

accurate as the correlations for the start and end of transition and the ability of the

intermittency function to describe the path of transition.

McDonald and Fish [1973] used a one-equation turbulence model to inves-

tigate the effects of surface roughness and freestream turbulence on the location and

extent of transition from a laminar to fully turbulent boundary layer. A damping

function was used to control the growth of the mixing length in the viscous sub-

layer, which in turn controlled transition. McDonald and Fish obtained excellent

numerical comparison of the heat transfer distribution with experimental data for

flat plate flow with zero pressure gradient. Their comparison of numerical heat

transfer distributions for a turbine airfoil were reasonable given the limited experi-

mental information for their model development.

The goal of Forest [1977] was to develop a numerical procedure for design

purposes to predict transitional boundary layers occurring on turbomachinery
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blades.Becauseof thesimplicityandlow computationaltime,Forestusedthe

PatankarandSpalding[1970]numericalcodewith anintermittencymodelcoupled

with a zero-equationturbulencemodel. His numericalpredictionsfor theshape
factor,momentumthickness,andheattransferdistributionswerein goodagree-

mentwithexperimentalflat platezeropressuregradientdata. In calculatingtheheat
transferdistributionfor arelaminarizationboundarylayer,Forestnotedalagin his

numericalcalculationswhencomparedto experimentaldata.Thecomparisonof the
heattransferdistributionsfor aturbinecascadewasreasonable.Onthesuctionsur-

facetheoverallpredictionsweregoodbut lackingin thetransitionregion. Onthe

pressuresurfacethecompetingeffectsof thehighfreestreamturbulence(promoting
transition)andhighacceleration(delayingtransition)producedlongregionsof

transitionalflow whichresultedin poorheattransferpredictions.

Thegoalof Hyltonet al. [ 1983]wasto assesthecapabilityof available

modelingtechniquesto predictturbineairfoil heattransferby acquiringexperimen-
tal datafor numericalcomparisonsandimprovethenumericaltechniques.They

usedthreesetsof openliteraturedatatodeterminewhichnumericalmodelthey

would focuson for improvements.Theboundarylayermodelsinvestigatedwere

anintegralmethod,afinite-differencemethodwithazero-equationmodel
[CrawfordandKays, 1976],andthesamefinite-differencemethodwith aJones

andLaunder[1973]two-equationmodel. Thetransitionmodelfor the integral
methodconsistedof aninstantaneoustransitionfrom laminarto turbulentflow ata

critical momentumReynoldsnumber.Bothfinite-differencemodelsusedaninter-

mittencymodelto simulatetransition.Basedoncomparisonwithopenliterature

turbine data, the finite-difference model with the zero-equation turbulence model

was selected for further study. Hylton et al. cited the _'ansition models as the weak

element in the overall modeling of turbine blade heat transfer, the simple intermit-

tency models led to poor predictions. Hylton et al. conducted a thorough investi-

gation into the calculation ability of several transition start models, transition length

models, transition path models, and zero-equation turbulent viscosity models to

simulate heat transfer distributions. They concluded that the available intermittency
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modelsleadto generallypoorpredictionsonboththesuctionandpressuresur-

faces.Theprincipalfailureof thesemodelswasthatthenumericaltransitioncom-

pletedmorerapidlythanexperimentalmeasurementsindicated.As a result, Hylton

et al. developed a zero-equation turbulence model that modified the turbulent vis-

cosity based on the freestream turbulence level. The resulting transition calcula-

tions were based on the "natural transition" capability of the zero-equation model.

The researchers also proposed a methodology for calculating good initial profiles

and boundary conditions in order to enhance accurate heat transfer results.

Other investigations into the use of zero-equation turbulence models cou-

pled with an intermittency model to numerically predict turbine blade heat transfer

distributions include the work of Roberts and Brown [ 1984] and Gaugler [1985].

Park and Simon [1987] is an excellent reference for the use of zero-equation mod-

els to predict transitional boundary layer heat transfer. The relative success of zero-

and one-equation turbulence models to simulate transition has created interest in

determining the ability of higher order turbulence models to predict transition.

Launder and Spalding [ 1974] were among the first researchers to publish

work related to the use of k-_: turbulence models to simulate transition. Launder

and Spalding published the numerical transition predictions of Priddin [19751 for

the gas turbine blade data of Turner [1971]. Priddin is credited with demonstrating

the ability of the k-E numerical procedure to simulate transition of external boundary

layers. Launder and Spalding noted the effect of high freestream turbulence on tur-

bine blade transition predictions. For high freestream turbulence intensities, i.e.

Tu, (Tu - 6.0%), the blade was nearly completely turbulent. For intermediate tur-

bulence levels (Tu ~ 2.0%), the blade was laminar until the 40% chord location,

then became turbulent. At low turbulence levels (Tu < 0.4%), the blade remained

laminar. Priddin did not use a transition model; therefore, Launder and Spalding

believed the low-Reynolds number k-e turbulence models have their own built in

"transition criteria." Priddin's numerical calculations were started near the stagna-

tion point of the blade, resulting in laminar initial profiles. No other details about



20

thenumericalprocedure,specificallythecreationof theinitial profiles,were

provided.

Wilcox [1975]usedtheSaffman[1972]k-o_ turbulencemodelto examine

theeffectsof freestreamturbulencelevelson thesimulationof transitionfor incom-

pressibleflat plateboundarylayers.Wilcox simulatedtransitionbymodifying two
empiricalconstantsof thek-c02governingturbulenceequationsasafunctionof the

turbulentReynoldsnumber(Ret= k/o3v).Wilcox denotedthex-Reynoldsnumber

for thestartof transition,Rext,asthepoint whereCfis observedto deviatefrom

thelaminarvaluebymorethan5%. Belowthecritical valueof Rext,Wilcox noted

little or noamplificationin turbulentkineticenergy(TKE), whichsignifiedtheex-

istenceof a laminarboundary,layer. However,whenRexapproachedRext,an

abruptincreasein TKE wasobserved,followedby anasymptoticapproachto a

valuecharacteristicof fully turbulent flow. Wilcox identified the transitional regime

as the range over which TKE increases from its initially low level to a much higher

value in the turbulent regime. The transitional regime could also be identified from

the numerical boundary layer characteristics by locating an abrupt change in the

momentum thickness, shape factor, local friction coefficient, or Stanton number.

Wilcox also noted similar results to Launder and Spalding, namely that an increase

in freestream turbulence level caused the x-location for the start of transition to

move upstream.

Dutoya and Michard [1981] used the Jones and Launder [1973] low-

Reynolds number k-e turbulence model to examine a developing turbine blade

boundary layer and the resulting heat transfer distribution. Two model constants

for the E-equation were numerically optimized to simultaneously fit existing data for

decay of isotropic turbulence, equilibrium turbulent boundary layer along a flat

plate, and the onset of transition. Dutoya and Michard essentially used a standard

k-e turbulence model with two of the model constants adjusted to simulate transi-

tion. The initial profiles for all dependent variables were based on a Blasius veloc-

ity profile. Dutoya and Michard stated that the starting calculations were conducted
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at Rex= 103,but couldbedefinedfor Rex< 10a (meaning shorter computer run

times) without affecting the calculations. The numerical friction coefficient

distribution for flow over an adiabatic flat plate were similar to other studies.

Dutoya and Michard observed a rapid rise in the TKE profile at the onset of transi-

tion, similar to Wilcox [ 1975], and their comparison of the calculated displacement

thickness Reynolds number data at the onset of transition matched the experimental

data of McDonald and Fish [1973]. Good heat transfer predictions were obtained

for flow along the suction side of a turbine blade, but the calculation trend on the

pressure surface was to relaminarize the flow, which did not match experiment.

Dutoya and Michard believed their program could not account for the complex na-

ture of the transition process, but believed their method was a convenient way of

calculating a boundary layer from near the stagnation point, through transition, to

fully turbulent flow at a low computational cost.

Daniels and Browne [1981] evaluated five numerical programs to determine

their heat transfer prediction capability for simulating the experimental gas turbine

data of Daniels [ 1978]. The various turbulence models of the five codes varied

from zero-equation turbulence models to a k-off turbulence model. The various

transition models of the five codes varied from an empirical input of experimental

transition location data, to the transition correlations of Forest [ 1977], and to the

transition model of McDonald and Fish [1973]. The comparisons of the numerical

results with Daniels' experimental data showed general agreement in the laminar

leading edge region and for the fully turbulent region on the blade suction surface.

The numerical predictions were poor for the entire blade pressure side due to the

complex flow field, and in the transition region on the suction side. Daniels and

Browne concluded that with the limited data available, no distinct advantages were

seen for using a more complicated two-equation turbulence model over the simple

mixing length model to calculate turbine blade heat transfer on the turbine blade

suction surface. The major difficulties of all the methods examined were the pre-

diction of transition and the effect of freestream turbulence on the laminar boundary

layer.
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Aradet al.11982]usedthetwo-equationturbulencemodelof Ng [1971]

with thelow-Reynoldsnumberfunctionsof Wolfshtein[1970]to numericallypre-

dict transitionfrom laminarto turbulentflow for acompressibleaxisymmetric

boundarylayeraroundabodyof revolution. No transitionmodelwasusedwith
thetwo-equationmodel;instead,transitionwasinitiatedbythediffusionof TKE

andlengthscaleinto theboundarylayerfrom thefreestream.This typeof model

employsthe"naturaltransition"capabilityof atwo-equationturbulencemodel. The

numericalpredictionsfor transitionReynoldsnumberbasedondisplacementthick-
ness,Re_it,agreedreasonablywell with thedataof McDonaldandFish[1973].

Aradet al. notedthatasthefreestreamlengthscaledecreased(meaninganincrease
in freestreamdissipationrate),Re_tincreased,andasthefreestreamlengthscale
increased(meaningadecreasein freestreamdissipationrate),Re_tdecreased.As

expected,if thefreestreamlengthscaleincreases,moreTKE will diffuseinto the
boundarylayerpromoting"naturaltransition"ata lowerRest.Nodiscussionon

thetransitionlength,initial profilesensitivity,or initial starting location was pro-

vided. There was also no mention by Arad et al. concerning calculations for flows

with pressure gradients.

Hylton et al. [1983], as mentioned earlier, examined the use of the Jones

and Launder [1973] low-Reynolds number turbulence model in the STAN5

[Crawford and Kays, 1976] two-dimensional boundary layer code to predict the

heat transfer distribution associated with their experimental turbine blade data and

other open literature data. An intermittency model was used to simulate transition

with the two-equation model. Hylton et al. realized that two-equation models had a

"built in" transition model (which produces "natural transition") but they were

attempting to see if the intermittency could be used to augment the "natural transi-

tion" of the two-equation model. They did not numerically predict any flow transi-

tion when using the two-equation model to simulate turbine blade heat transfer, due

mostly to a numerical suppression of the inward diffusion of TKE from the outer

boundary layer region. They did attempt to examine a combined high-Reynolds
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numberandlow-Reynoldsnumberturbulencemodelto openliteraturedatabut

unreliableheattransferpredictionscausedthemtopursuea zero-equationturbu-
lencemodelapproach.

Wangetal. [1985]appliedthelow-Reynoldsnumbertwo-equationmodel

of JonesandLaunder[1973]in theSTAN5[CrawfordandKays, 1976]boundary

layercodeto examinetheturbinebladeheattransfermeasurementsof Hylton etal.
[1983]andTurner[1971]. No transitionmodelwasspecified.Wanget al. be-

lievcdthatthedifficulty encounteredwith two-equationmodelscouldbeattributed

to improperinitial profilesandboundaryconditionsfor TKE andturbulentdissipa-

tion rate(TDR) in theairfoil leadingedgeregion. A two-zonemodelwasdevel-

opedto calculatethedissipationof TKE andTDR in thefreestreamboundarylayer

for thestagnationregion. In thefirst zone,thefreestreamTKE andTDR boundary

conditionsdonotdissipateuntil a"critical velocity" is reached.In thesecondzone,
atthecriticalvelocitypoint, thefreestreamTKE andTDR boundaryconditionsare

allowedto dissipate.Thecritical velocityfor theturbinebladepressureandsuction

surfacesaredifferentbecauseof thedifferentflow fields aroundtheleadingedge.

Frictioncoefficientdatafor flat platezeropressuregradientsimulationswas

presentedbutnocomparisonwasmadewith experimentaldata. For turbineblade
simulations,theheattransfercalculationsof Wangetal. agreedreasonablywell

with experimentaldata. On thesuctionsurfaceof theblade,theheattransferpre-

dictionswerehigh in thetransitionalandturbulentregion. On thepressuresurface,
thegeneraltrendsin theexperimentaldatawerematched.

RodiandScheuerer[1985a,1985b]coupledthelow-Reynoldsnumber

modelof LamandBremhorst[1981]togetherwith anempiricalmethodfor pre-

scribinginitial profilesfor TKE andTDR tocontroltransitionandnumericallypre-
dict theheattransfermeasurementsof Blair andWerle[1980,1981]andDaniels

andBrowne[1981]. Transitionpredictionmethodscoupledwith two-equationtur-

bulencemodelsup to thispoint havemodeledtransitionbycontrollingtheTKE and

TDR freestreamboundaryconditions,resultingin acontrolof thediffusionrateof
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theturbulencequantitiesfrom thefreestream.RodiandScheuererbelievedem-

pirical informationmustalsobesuppliedin theinitial turbulentprofilesin orderto

obtainsatisfactorytransitionpredictions.Theyconductedasensitivityanalysisof
thetransitioncalculationsto prescribedinitial andboundaryconditions.Their re-

suitsyieldedanmethodfor obtainingTKE andTDR initial prof'flesthatimproved

transitionpredictions.An empiricalcoefficient,al, usedto definetheTDR initial
profile,wascalibratedagainsttheflat platedataof Blair andWerleto matchthe

numericallypredictedtransitionReynoldsnumberto theexperimentaldata.A

graphof al versusturbulencefreestreamturbulenceintensitywasformulatedfrom

thecalibrationtests.Thisal constantwasusedto adjusttheinitial TDRprofile

whichin turn adjustedthenumericaltransitionpredictions.In modelingthedataof
DanielsandBrowne,RodiandScheuererobtainedgoodpredictionsfor thesuction

surfaceheattransferwith discrepanciesoccurringonly in thetransitionregion

wherethenumericalmethodcalculatedashortertransitionlengththanexperimen-
tally measured.Onthepressuresurface,RodiandScheuererobtainedexcellent

heattransferpredictions.

ZerkleandLounsbury[1987]appliedtheinitial profilesproposedby Rodi
andScheuerer[1985a]andtheLamandBremhorst[1981]turbulencemodelin

theirversionof STAN5[CrawfordandKays, 1976]to examinetheheattransferof
Blair andWerle[1980]andseveralturbinebladecascades.Overall,thenumerical

resultsmatchedtheexperimentaldatareasonablywellexceptin thetransition
region.

Recentwork by Schmidt[1987]hasbeenanextensiveinvestigationonpre-

dicting boundarylayertransitionwith two-equationturbulencemodels. Schmidt's

workwastwo-fold. First,heinvestigatedthebasic"mechanics"of turbulentflow

predictionswith two-equationmodelsto documenttheirbehaviorbeforeattempting

to modelmorecomplexflows. Second,heproposedatransitionmodelusedto

controlthepathof transitionresultinginmoreaccuratepredictionsin thetransition

region. Schmidtconducteda thoroughinvestigationinto theeffectstheTKE and
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TDR initial profilesof Rodi and Scheuerer have on transition and described

guidelines for their use. Schmidt evaluated the numerical characteristics of the Lain

and Bremhorst [ 1981 ] and Launder and Sharma [ 1974] two-equation models. In

the process, he discovered and put forth corrections to slight numerical instabilities

in the models. As discussed by Wilcox [1975], transition may be identified by an

abrupt increase in the boundary layer TKE. Schmidt proposed a method for

simulating the path of transition by controlling the growth rate of the production of

TKE in the boundary layer. The proposed model controlled the time rate-of-change

of the production of TKE which is converted to spatial coordinates through the

local convection velocity. This model was termed a production term modification

model or PTM model. The transition model parameters were calibrated against the

experimental work of Abu-Ghannam and Shaw [1980] to a]low the model to

modify the production of TKE based on the local freestrc., turbulence level. The

comparison of Schmidt's numerical heat transfer predictions with the experimental

flat plate data of Blair and Werle [1980,1981 ] and Rued and Wittig [ 1984] along

with the turbine blade data of Daniels and Browne [1981] and Hylton et al. [1983]

produced very good results even in the transition region. The unique aspect of

Schmidt's transition model is its flexibility and ease with which it may be imple-

mented into any tv, o-equation turbulence model.

Johnson [1987] developed a spatially-based t,'ansition model, similar in

form to Schmidt's transition model, and coupled it v, ,th the K. Y. Chien [1982]

two-equation turbulence model in TEXSTAN (described in Section 1.5). Johnson

calibrated the transition model constants against the flat plate transition data of Blair

and Werle [1980, 1981], then compared various experimental gas turbine blade

heat transfer distributions to his numerical heat transfer calculations. The numerical

calculations of the beat transfer distributions for the Blair and Werle data generally

matched, even in the transition region. The comparison of Johnson's numerical

heat transfer predictions with the various cylinder flows and turbine blade heat

transfer data demonstrated difficulty in the transition region for the suction surfaces

and consistent under-prediction of the pressure surface heat transfer. Johnson
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attributedsomeof thepossiblenumericalerroron inadequatespecificationof the

far-fieldvelocityandturbulenceintensityfor someof theexperimentaldatasets.

Sullivan[1988]investigatedtheuseof theK. Y. Chientwo-equationmodel

coupledwith twodifferenttransitionmodelsin TEXSTAN to simulatetheexperi-
mentalheattransferdatafor fiat plateandcircularcylinderflow. Sullivanexamined

theuseof anintermittencymodelandthePTM modeldevelopedbySchmidt.
Sullivanobtainedgoodresultsfor theexperimentalheattransferdistributionfor

bothflow fieldsusingthePTMmodelbutsomediscrepanciesin predictingthestart
of transitionfor thecylinderflow werepresent.

A reviewof theliteratureindicatesthatthelow-Reynoldsnumbertwo-

equationturbulencemodelhasthepotentialfor modelingthequalitativeaspectsof
flow transition. However,therearetwo importantcriteriathatmustbemetbefore

themodelingof transitioncanpossiblybeattained.First,thepredictionof transi-
tion will only beasgoodastheturbulencemodelusedwith it. Therefore,ade-

tailedknowledgeof thepredictioncapabilityof theturbulencemodelfor laminar

boundarylayersisjust asimportantasin fully turbulentboundarylayers. Second,

thespecificationof "physically"correctboundaryandinitial conditionsareimpor-
tant becausethe"naturaltransition"capabilityof two-equationturbulencemodel,

aswell asanytransitionmodel,will be influencedby unrealisticstartingcondi-

tions. Only whenthesetwo criteriaaremet,canthepredictioncapabilityof atran-

sitionmodelbeevaluatedandimproved.

1.4 Overview of Experimental Transition Studies

The purpose of this section is to outline available experimental transition

studies from the open literature that detail enough flow field information to allow

numerical transition model behavior to be assessed. Information about the behavior

of proposed transition models can not be completely assessed because some ex-
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perimentaldatain theopenliteraturedonotprovideenoughinformationaboutthe

freestreamturbulencequantities.Hylton et al. [1983]discussedtheimportanceof

boundaryandinitial conditionson thenumericalpredictionof turbinebladeheat
transferdistributions.Asdiscussedpreviously,two-equationturbulencemodels

displaya"naturaltransition"which isa functionof thediffusionof TKE andTDR
into theboundarylayerfrom theouterregion. Therefore,arequirementfor accu-

ratetransitionsimulationsdependsonaknowledgeof freestreamTKE andTDR

distributionsfrom experimentaldata.At aminimum,thefreestreamturbulencein-

tensity, Tue, must be specified at two locations in order to calculate the initial

freestream value of TDR. In general, the more experimental freestream turbulence

intensity data available, the more accurate the initial freestream value of TDR may

be calculated.

In the literature review conducted by Schmidt [1988], an outline of experi-

mental data available in the open literature containing enough information about

experimental freestream turbulence levels was presented. Schmidt determined the

experimental data of Blair and Werle [1980, 1981, 1983a and 1983b], Reud and

Wittig [1985], and Wang et al. [1985] are currently the only experimental data

available that provide enough freestream turbulence data to accurately calculate TKE

and TDR initial conditions.

Blair and Werle [1980, 1981, 1983a, 1983b] investigated the laminar to

turbulent transition occurring over a heated flat plate subjected to various freestream

turbulence intensities and pressure gradients. The objectives of their study were to

accurately determine the magnitude the effects of freestream turbulence has on tur-

bulent boundary layer heat transfer and to provide a thoroughly documented set of

experimental data for use in improving the analytical modeling of this phenomena.

The experimental tests consisted of both zero pressure gradient flow and constant

acceleration flow. The total wall-to-freestream temperature difference was ap-

proximately 15 K. The range of freestream turbulence intensities for the test cases

were approximately 0.25% to 7%, generated by four different turbulence generat-
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ing gridsupstreamof acontractionin thetestsection.Thefreestreamvelocitywas
30.3m/sandthetestsectionpressurewasambient.Blair andWerlemeasuredall

threenormalcomponentsof theReynoldsstress,theStantonnumberdistribution,

andthefreestreamturbulenceintensityfor theentirelengthof thetestsection.

ReudandWittig [1984] obtained experimental data on the effects of

freestream turbulence, wall cooling, and strong favorable pressure gradients on the

laminar to turbulent boundary layer transition. For these tests the freestream tur-

bulence was generated by grids and provided turbulence intensity levels from 1.6%

to 11%. Reud and Wittig measured only the u' 2 and v' 2 turbulence components,

and the w' 2 component was assumed to be equal to the v' 2 component. Turbu-

lence intensity and Stanton number distributions are provided for the entire test

section.

Wang et al. [1985] focused on the effect of freestream turbulence intensity

on transition. Profiles of velocity, temperature, Reynolds normal stress (u' 2), and

Reynolds shear stress (u'v') were measured along with Stanton number and friction

coefficient distributions. The turbulence intensity levels investigated were 0.7%

and 2.0%.

A special note must be made for the experimental work conducted by Abu-

Ghannam and Shaw [1980]. An important relationship in transition modeling is the

knowledge of the start and end of transition. Abu-Ghannam and Shaw detailed

past experimental efforts for a correlation between momentum thickness Reynolds

number and freestream turbulence intensity. With this knowledge and their own

experimental work, Abu-Ghannam and Shaw developed correlations to predict the

start and end of transition as a function of freestream turbulence intensity for zero

and non-zero pressure gradient flows. These correlations are based on many ex-

perimental data sets and therefore are not biased to any particular set of experimen-

tal results.
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1.5 Description of TEXSTAN

This section outlines the computer code, TEXSTAN, that was used in this

study to numerically solve the governing boundary layer equations. TEXSTAN is

based on the STAN5 boundary layer program developed by Crawford and Kays

[1976]. The finite-difference numerical scheme of TEXSTAN is based on the nu-

merical algorithm by Patankar and Spalding [ 1970], with additional changes incor-

porated by Pietrzyk [1985] and Benton [1985].

TEXSTAN solves the steady two-dimensional parabolic differential equa-

tions that govern boundary layer flow. This program sequentially solves the mo-

mentum equation and any number of diffusion, e.g.. transport, equations, such as

stagnation enthalpy, TKE, TDR, and mass concentration governing equations. The

equations solved by TEXSTAN are transformed using a nondimensional stream

function, then integrated over a finite control volume to obtain finite-difference

equations for each grid point in the calculation domain. This discretization tech-

nique is known as a control-volume formulation and is described in detail by

Patankar [1980]. A number of different source terms may be included in the trans-

port equations. In the momentum equation, buoyancy effects and an axially vary-

ing general body force may be considered. In the energy equation, viscous dissi-

pation, internal heat generation, and body force work terms may be included.

TEXSTAN can be used to analyze a variety of flow geometries. An ax-

isymmetric coordinate system is adapted so it may easily be converted to a cartesian

coordinate system by setting the radius of curvature to unity. TEXSTAN has the

capability of solving both external boundary layer flow for flat plate or axisym-

metric bodies of revolution and internal boundary layer flow for circular pipes, par-

allel planes, or concentric annuli. The external flow capability was used throughout

this study.
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TEXSTAN hasthecapabilityof modelingdifferentboundaryconditions,
Forexternalflows, thefreestreamconditionsfor velocity, stagnationenthalpy,

TKE, andTDR areprovidedaslevelspecificationswhile thewall conditionsmay

bespecifiedaseithera levelor flux. Theusermayspecifytheinitial profilesof the

dependentvariablesfrom experimentaldataor theautomaticprofilegeneratorin

TEXSTAN maybeused. Forthis study,acomputercode,TEXIPBC, wasdevel-
opedbytheauthorto calculate"physically"correctboundaryconditionsandinitial

profiles for transitionalstudies.An outlineof TEXIPBC is discussedin Chapter3.

Fluid propertiesmaybetreatedasconstantor variable.Constantproperties

aresuppliedby theuser,while thevariablefluid propertiesaresuppliedthrough

propertysubroutinesthatareessentiallytabulatedfluid properties.Thisresearch
usedair astheworking fluid.

Severaldifferentturbulencemodelsareincorporatedin TEXSTAN,all of

whichusethemeanfield closureapproximation.Theturbulencemodelsconsistof

a Prandtlmixing lengthzero-equationturbulencemodelandseveraltwo-equationk-
eturbulencemodels.Provisionsfor laminar-to-turbulentu-ansitionis availablefor

thePrandtlmixing lengthmodelusingacritical momentumthicknessReynolds

numbercriteriato adjustthevanDriestdampingfunctionuntil theflow is fully tur-
bulent. No transitionmodelis providedfor thetwo-equationturbulencemodels.

1.6 Thesis Outline

This chapter has described the basic goals of the thesis and provided rele-

vant background information on the modeling of external heat transfer on gas tur-

bines. The environment of the gas turbine has been detailed with emphasis on the

characteristics of the flow field that must be numerically modeled. An overview of

turbulence modeling was presented to familiarize the reader to various methods

used to numerically model turbulence. Relevant numerical investigations from the



31

openliteraturefor simulatingturbinebladeheattransferdistributionswerepre-

sentedto detailtheperformanceof pastmethodsandprovideinsightinto thebe-
haviorof turbulencemodeling.Availableexperimentaldataprovidingimportant

turbulenceinformationrequiredfor accurateevaluationof turbulencemodelswas
detailed.An outlineto thenumericalboundarylayercode,TEXSTAN, usedin this
thesiswasdiscussed.

Chapter2 providesthemathematicalderivationof theboundarylayergov-
erningequationssolvedby TEXSTAN. Thegoverningequationsconsistof the
time-averagedmomentumandstagnationenthalpyequationsalongwith thek-e

transportequationsusedfor meanfield closure.TheK. Y. Chien[1982]and

LaunderandSharma[1974]two-equationturbulencemodelsareoutlined,along
with adiscussionof thetwo transitionmodelsoriginally proposedto beinvesti-

gatedby this thesis.

Chapter3 detailstheprocessusedbyTEXIPBCto generate"physically"

correctboundaryconditionsandinitial profilesrequiredfor awell-posednumerical
simulation.Theneedfor asmoothfreestreamvelocitydistributionto calculateand

accuratepressuregradientis examined.Twomethodsfor obtainingvalid initial

TKE andTDR levelsfor calculatingproperdecayof thefreestreamturbulence

quantitiesarepresented.Also, asolutionto aproblemassociatedwith the

freestreamlengthscaledistributionfor theK. Y. Chien[1982]two-equationmodel
is discussed.

Chapter4 assessesthecriteriafor theproposedinitial TKE andTDRpro-
files andtheir effecton the"naturaltransition"predictionsof theK. Y. Chien

[ 1982] two-equation turbulence model. Numerical calibration of the k-equation

production modification, last proposed by Schmidt [ 1987], is developed for the K.

Y. Chien turbulence model, along with comparisons of the numerical transition

prediction capability with experimental flat plate heat transfer distributions. It is at
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thispoint thattheproblemassociatedwith usingtheK. Y. Chientwo-equation
modelfor transitionstudiesisdetailed.

Chapter5 providesa summaryof the conclusions formulated in this thesis,

and a brief discussion of recommendations for future work is presented.



Chapter 2

Mathematical Description of Two-Dimensional Boundary Layer Flow

2.0 Introduction

In fluid flow, the boundary layer is a thin region close to a solid body

where vonicity exists and viscous effects are important. Boundary layers over flat

surfaces with sharp leading edges start laminar then, due to flow instabilities, tran-

sition and become turbulent boundary layers. This process also occurs on a wide

variety of surfaces of engineering importance such as heat er, changer fins, airfoils,

and nozzles. Various engineering design factors, such as local friction coefficient

and heat transfer, may be predicted through the solution of the governing boundary

layer equations, provided the pressure distribution over the surface is known. This

chapter outlines the governing boundary layer equations that are numerically solved

by TEXSTAN for both laminar and fully turbulent flow. These governing equa-

tions consist of the time-averaged continuity equation, momentum equation, and

stagnation enthalpy equation for flow of a variable property fluid. The turbulent

transport equations for two-equation mean field closure are outlined as well as the

proposed transition models used in this study.

The basic characteristic of a turbulent flow is that the velocity field is time

dependent; however, any attempt to describe the velocity field as a function of time

is difficult. A measurement at a point in a steady turbulent flow field yields a ve-

locity that fluctuates in an irregular manner around a steady time-independent ve-

locity (i.e. mean velocity). The fluctuating velocity components are time-depen-

dent. Since the fluctuating components tend to be small relative to the mean veloc-

ity, a statistical approach of time-averaging is applied to the time-dependent velocity

components, thus allowing the flow to be treated as if it were steady. In other

33
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words,in thecontextof time-averaging, the mean values are examined over a suffi-

ciently long interval of time that they are considered independent of lime. In the

equations that follow, a Reynolds decomposition method is used to express the in-

stantaneous dependent quantifies (denoted by "~") into mean (denoted by upper

case) and fluctuating (denoted by primes) components. As an example, the

Reynolds decomposition of the instantaneous streamwise (x-direction) and instan-

taneous cross-stream (y-direction) velocity components are

and

0 = U+u', (2.1)

_¢ = V +v'. (2.2)

Fluid properties are assumed to be variable but without fluctuating components.

Therefore, the properties may be expressed as

density: p" = 19, (2.3)

dynamic viscosity: }.t = I t . (2.4)

To develop the governing turbulent boundary layer equations, the

Reynolds decomposition expressions for the dependent variables are substituted

into the instantaneous governing equations, then the equations are averaged over

time. The resulting boundary layer equations for turbulent flow contain new terms,

such as Reynolds stress and turbulent heat flux terms, that must be modeled using

some form of turbulence models.

2.1 Boundary Layer Assumptions

Figure 2.1 is a sketch of the geometry, x-y coordinate system, and basic

nomenclature used to describe a boundary layer. Shown in Figure 2.1 is a bound
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ary layer region where the fluid velocity changes from a freestream value, Ue, to

zero at the wall. For y-distances greater then the boundary layer thickness, 8, the

flow field vorticity vanishes and the flow is considered inviscid and may be de-

scribed by Euler equations. On the other hand, the boundary layer region has par-

ticular characteristics which allow the full Navier-Stokes equations to be simplified.

These simplifying boundary layer characteristics are termed boundary layer as-

sumptions and apply to both the momentum and energy governing equations. This

section outlines the assumptions used to develop the boundary layer equations from

the full Navier-Stokes equations.

If the boundary layer thickness (5) is small relative to all other flow dimen-

sions, then the following conditions must hold for a two-dimensional boundary

layer

and

>> _ (2.5)

aT
3---f >> bx' 0x' _y (2.6)

Consistent with equations (2.5) and (2.6) in which the flow is predominantly in the

x-direction, an examination of the y-momentum equation demonstrates that the

cross-stream pressure gradient is approximately zero. As a result, the pressure

gradient becomes only a function of the x-location

and

_P
_-_.. _ 0 (2.7)
yo

O__ dP (2.8)
/)x dx "

Integrating equation (2.7) across the boundary layer proves the pressure normal to

the boundary layer is constant and may be assumed equal to the pressure at the
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outeredgeof theboundarylayer. Thepressureis saidto be "impressed"on the

boundarylayerby theouterflow [Schlichting,1979].Thefreestreampressureis

calculatedusingan inviscidflow calculation. Equations(2.5)to (2.8)arethe
boundarylayerapproximationsfor themomentumequation.

Whenthere is heat transfer between the fluid and the surface of a body, the

temperature changes occur within the thermal boundary layer. As with the momen-

tum boundary layer, the thinness of the thermal boundary layer (A) allows the fol-

lowing condition to hold

aY aY

a-'-y->> a--_-" (2.9)

Equation (2.9) is the boundary layer approximation for the thermal boundary layer.

This approximation states the cross-stream temperature gradients are much larger

than the streamwise temperature gradients.

2.2 Continuity Equation

The law of conservation of mass states that mass can not be created or de-

stroyed. The instantaneous continuity equation is

ap a(pO) a(p_V) _p_}
--+--+ *--- -0

3t 3x 3y 3z (2. I 0)

By time-averaging equation (2.10) using standard averaging rules [Kays and

Crawford, 1980], the time-averaged continuity equation is defined as

a(pu) a(pv) a(pw)
3_ .4 3y + 3----z---= o. (2.11)
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Subtracting equation (2,11 ) from equation (2,10) yields the fluctuating continuity

equation.

O(pu') O(pv') a(pw')
Ox + Oy + Oz = O. (2.12)

Equations (2.11) and (2.12) show that the mean and fluctuating velocity compo-

nents each separately satisfy the continuity equation, The continuity equation is not

solved directly by TEXSTAN due to the variable transformation from primitive

velocity variables to a compressible stream function, that is subsequently nondi-

mensionalized.

2.3 Momentum Equation

The law of conservation of momentum states that the net force on a control

volume is equal to the time rate-of-change of momentum of the control volume.

The instantaneous x-momentum equation for a two-dimensional flow of a variable

property fluid with negligible body forces is

The momentum boundary layer assumptions, equations (2.5) through (2.8), are

used in defining equation (2.13). Time-averaging equation (2.13) and applying

equation (2.11) yields the mean x-momentum equation

0U o_U dP +__y OU -7--:}PU-_-x + PVb--y-y - dx I.t--_-y- pu v . (2.14)
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In equation(2.14), the left-hand terms represent the convective transport of mo-

mentum in the boundary layer by the mean flow. The first term on the right-hand

side represents a momentum source term, namely the pressure gradient, and the

second term on the fight-hand side represents the molecular and turbulent diffusion

of momentum in the boundary layer.

The turbulent diffusion term in equation (2.14), -pu'v', is created by the

time-averaging of equation (2.13). This new term is called the turbulent Reynolds

stress. A companion term arises, the x-gradient of 9u'u', but is neglected com-

mensurate with the boundary layer assumptions. The Reynolds stress is the contri-

bution of turbulent motion to the boundary layer stresses and plays a significant

role in the transfer of momentum by turbulent motions. For a two-dimensional

boundary layer, -pu'v' is the dominant Reynolds stress term, except in the viscous

sublayer. Examining equation (2.14) shows there are three unknowns, U, V, and

-9u 'v', but only two equations, continuity and x-momentum, to solve for the un-

knowns. This inconsistency of equations to unknowns demonstrates the apparent

closure problem in turbulence modeling,

The simplest procedure for solving the closure problem is to develop a

constitutive equation to describe the Reynolds stress, and therefore provide a solu-

tion for the boundary layer flow. An approximation is defined to evaluate the

Reynolds stresses by comparing the turbulent Reynolds stress to the corresponding

viscous stresses. The Boussinesq approximation assumes the turbulent stresses act

like the viscous stresses and are directly proportional to the mean velocity gradient

[Hinze, 1975]. This approximation is called mean field closure (MFC) and can as-

sume several forms

OU OU OU
-pu'v' = Peu-- = pvt = IJ-t ,

by _ Oy
(2.15)

where EM is the eddy diffusivity fi)r momentum and lat is the turbulent viscosity.
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Theeddydiffusivity dependsontheturbulencein theflow, henceit is a

functionof positionandnot afluid property.Theturbulenceclosureproblemre-
ducesto calculating_:M.Theeffectiveviscosity,I.teff,isdefinedasthesumof the

molecularviscosityandtheturbulentviscosity(i._ff= l.t+ i.tt). Themeanmomen-

tum equationisrewrittenby combiningtheeffectiveviscosityandequations(2.14)

and(2.15)to yield

aU _gU c3P
I ub-Zx+ l v-b-y-y= ax-- + _l.efg----

_)y "
(2.16)

Equation (2.16) is the governing boundary layer momentum equation

solved by TEXSTAN for both laminar and turbulent flows in the absence of body

forces. When the flow field is laminar and the turbulent viscosity is zero, equation

(2.16) becomes the steady laminar boundary layer momentum equation.

As discussed by Rodi [1982], the use of low-Reynolds number two-equa-

tion models has become popular because of its ability to model the effects of turbu-

lence history and transport on the velocity and length scale of turbulent motion.

The expression of turbulent viscosity for two-equation models in the form of equa-

tion (1.6) is

_t = PClaf_k-_2 , (2.17)
E

where k is the turbulent kinetic energy (TKE) of the flow, _ is the isotropic turbu-

lent dissipation rate (TDR) of the flow, C_t is an empirical constant, and fu is a near

wall damping function. Equation (2.17) is the essence of two-equation turbulence

modeling and may be used in conjunction with equation (2.15) to calculate the

Reynolds stress term of the momentum equation. The nonisotropic dissipation

rate, E, can be related to the isotropic dissipation rate by
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A

= _+ D • (2.18)

In equation (2.18) E is the nonisotropic dissipation rate, possessing a finite wall
A

value; E is the isotropic dissipation rate, that is zero at a solid wall; and D is the low-

Reynolds number term. The addition of D, discussed later, was proposed by Jones
A

and Launder [1972] to allow the solution of a transport equation for e rather than e

and still satisfy the finite dissipation rate boundary condition at the wall (i.e. y -- 0).

The evolution of the turbulent viscosity in equation (2.17) requires the use

of transport equations to describe the evolution of TKE and TDR through the

boundary layer. Appendix A provides details on deriving the TKE and TDR trans-

port equations. The final model form of the TKE and TDR transport equations,

from Appendix A and following Patel et al. [1985], are

and

OkPU_x-x +pV_yy = gt -@-y + _t+_k- k g -{pc+D)

3e 3e

ouN+OVyy C1 fl _ + i.t + ot by J

-[ PC2f2_k_ + El.

(2.19_

(2.20)

The TKE and TDR transport equations contain five empirical constants: Cg, C],

C2, ok, and _E and three damping functions: fu, fl, and f2, along with two

additional terms D and E.

Equations (2.19) and (2.20) are low-Reynolds number forms of a k-e tur-

bulence model. Jones and Launder [1972] proposed the use of damping functions

f_., ft, and f2, as functions of the turbulent Reynolds number, Ret = k2/v& to mod-

ify the values of the C-constants so that calculations may be made through the
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bufferandviscoussublayerto thewall. Thelow-Reynoldsnumberterms(D and
E) modify theisotropicbehaviorof TDR, for near-wallcalculations.All k-e two-

equation turbulence models are represented by equations (2.19) and (2.20), with

the values of the constants, damping functions, and additional terms distinguishing

the different two-equation models.

In equation (2.19), the left-hand term represents the convective transport of

TKE by the mean flow. The first term on the fight-hand side represents the pro-

duction of TKE and simulates the kinetic energy exchange between the mean flow

and the turbulence. Normally this energy exchange involves a loss of mean kinetic

energy from the mean flow and a profit in the TKE of the turbulence. The second

term on the fight-hand side is diffusional, i.e. a transport term whose integral over

the boundar 3, layer is zero, and it represents the redistribution of TKE in the bound-

ary layer. This term is composed of both the turbulent diffusion and molecular dif-

fusion of TKE. The third term on the right-hand side represents the viscous dissi-

pation, with the low-Reynolds number term (D) compensating for the zero bound-
A

ary condition for e.

In equation (2.20), the left-hand term represents the convection of TDR by

the mean flow. The first term on the fight-hand side represents the production of

turbulent dissipation by the mean flow. The second fight-hand term represents the

molecular and turbulent diffusion of TDR in the boundary layer. The third term of

the fight-hand side represents the viscous dissipation of TDR, with the low-

Reynolds number term (E) included to improve the match of the peak level of TKE

with experiment [Jones and Launder, 1972].
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2.4 Stagnation Enthalpy Equation

The law of conservation of energy states that the increase in energy within a

region is the result of work and heat transfer to the region. The instantaneous

boundary layer form of the stagnation enthalpy equation for a variable property

fluid without internal heat generation and body force work is

/_p_) _pUi';)_pV_q _) _.___ _I_kt_)U1

a--'-t_ + 3_ + o3_y -_ = -t_y + _-'_ Joay, (2.21)

where _ is the molecular heat flux. The thermal boundary layer assumption, equa-

tion (2.9), is used in defining equation (2.21). The molecular heat flux is formu-

lated using Fourier's law of heat conduction as follows

= -k 3T (2.22)
3y'

where k is the thermal conductivity and T is the instantaneous static temperature.

The thermodynamic equation of state for a perfect gas relates the instantaneous

static enthalpy to the instantaneous static temperature as shown

dI" = c dT (2.23)

where c is the specific heat at constant pressure. The instantaneous static enthalpy

is related to the instantaneous stagnation enthalpy using the following relation

= I:_U 2
2 (2.24)

Using equations (2.23) and (2.24), equation (2.22) is recast in terms of the instan-

taneous stagnation enthalpy as shown
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q= Pr_Oy (2.25)

wherek/c is equalto M/Pr.ThePrandtlnumberis usedto relatesthemoleculardif-

fusivity to thethermaldiffusivity. Usingequation(2.25),equation(2.21)is
rewrittenasfollows

Oio _i o

PUUx+ pv-b-fy= 1 0 _U_2.. (2.26)

In equation (2.26) the molecular heat flux term has been recast in terms of a gradi-

ent in stagnation enthalpy, which leads to the more complex form of the viscous

work term.

Time-averaging equation (2.26) and the application of continuity, equation

(2.11 ), yields the mean stagnation enthalpy equation

PU_x +9V-_-y--y = Pr_y pv'i*' + 1-pr}gto-_y 2 _]. (2.27)

In equation (2.27), the left-hand terms represent the convective transport of stagna-

tion enthalpy in the boundary layer by the mean flow. The first term on the right-

hand side represents the molecular and turbulent diffusion of stagnation enthalpy in

the boundary layer, and the second term on the right-hand side is a source term and

represents both a diffusion and dissipation of energy when the term is expanded.

Equation (2.27) contains a new term, -pv'i*', created by the time-averaging

of equation (2.26). This new term is called the turbulent heat flux. It is the contri-

bution of turbulent motion to the boundary layer temperature distribution and plays
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animportantrole in theheattransferdueto turbulentmotion. Thecompanionterm,

thex-gradientof pu'i°', is neglectedcommensuratewith theboundarylayeras-

sumptions.As with themomentumequation,thereis aclosureproblemassociated

with thesolutionof thestagnationenthalpyequation.Theturbulentheatflux is the
oneundefinedtermin equation(2.27)andrequiresaconstitutiveequationin order

to solvethestagnationenthalpyequation.

Beforedefiningtheconstitutiverelationfor theturbulentheatflux, anex-

pressionfor thefluctuatingstagnationenthalpymustbedefined.Thefluctuating

stagnationenthalpycanbedecomposedintoafluctuatingstaticenthalpyandave-
locity term,following KaysandCrawford[19g0],

1 _ i + Uu'. (2.28)

Usingequation(2.28),theturbulentheatflux maybeapproximatedas

-pv'i*' -_ -pvT+ U(-pu--_). (2.29)

UsingaBoussinesqtypeof meanfield closureargument,theturbulentheat

flux is assumedproportionalto themeantemperaturegradient.Therefore,aneddy
diffusivity for heattransfer(ell) maybedefinedin thesamemannertheeddydiffu-

sivity for momentumisdefinedto relatetheReynoldsstressto themeanvelocity

gradient.Theeddydiffusivity modelfor heattransferusestheeddyconductivity

(kt) to relate the turbulent heat flux to the mean stagnation enthalpy gradient.

Therefore, the eddy diffusivity model for heat transfer, like the momentum counter

part, can assume several forms

-pVl = EH - " : -- -
3y c 2 Prt 2 ' (2.30)
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wherePrt is theturbulentPrandtlnumber,formulatedas Idtc/kt in analogy to the

laminar Prandtl number. The stagnation enthalpy form of the turbulent heat flux is

formulated by combining equations (2.30) and (2.15) into (2.29), which yields

-pv'i*' = Prt 3y[ + _t 2 " (2.31)

The laminar (molecular) and turbulent conductivity may be expressed in

terms of an effective thermal conductivity (divided by the specific heat, c) as shown

Using equation (2.32) and the definition of the effective viscosity (I.l.eft), the effec-

tive Prandtl number, Preu, is defined as follows

Preff
[.lcff _tcff

g gt

Ph

(2.33)

The mean stagnation enthalpy equation is rewritten by combining the effec-

tive Prandtl number definition (equation 2.33) and equation (2.31) to yield

°'pU--_- X + pV--_-y = Preff _y + l- --J--- _effPreff 2 . (2.34)

Equation (2.34) is the governing energy equation solved by TEXSTAN for both

laminar and turbulent flows in the absence of thermal heat sources and body force

work. For a laminar flow calculation, the turbulent Prandtl number and turbulent

viscosity are set to zero, and equation (2.34) becomes the steady laminar equation.
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Turbulencemodelingwith heattransferrequiresspecificationof theturbu-

lentPrandtlnumber. Forfully turbulenthighReynoldsnumberflows, Prtis vari-

ablebetweenthewall andthefreestream,seefor instanceKaysandCrav,f_rd
[1980]. Forthenumericalsimulationsof transitionalflows in this thesis,theturbu-
lentPrandtlnumberwasassumedaconstant0.9.

2.5 Two.Equation Turbulence Models

This investigation focuses on the use of the K. Y. Chien [1982] two-equa-

tion low-Reynolds number turbulence model for transition simulations. This sec-

tion presents the empirical constants and damping functions which constitutes the

K. Y. Chien turbulence model. In Chapter 4, the transition predictions of the

Launder and Sharma [ 1974] low-Reynolds number turbulence model are compared

to the K. Y. Chien model. Therefore this section also presents the empirical con-

stants and damping functions for the Launder and Sharma turbulence model.

K. Y. Chien 11982] developed a variation to the two-equation, low-

Reynolds number turbulence mode! proposed by Jones and Launder [1972]. The

TKE and TDR equations used by Chien are of the form defined by equations (2.19)

and (2.20), with the empirical constants, damping functions, and extra terms de-

fined as follows.

E .mpirical Constants:

C1 = 1.35 (2.35)

C2 = 1.8 (2.36)

C_ = 0.09 (2.37)

_k = 1.0 (2.38)
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_ = 1.3 (2.39)

Damping function_:

fo = 1.0- exp( -0.0115 Rex ) (2.40)

fl = 1.0 (2.41)

f2 = 1.0-0.22exp[-(-_!) 2] (2.42)

Low-Rgynolds Number Terms:

D = 2_t k
y2 (2.43)

E = - 2kt --e---exp( -0.5Rex )
y2 (2.44)

In the equations shown above, Ret = k2/vE and Rex -- y÷ = yu_/v.

Launder and Sharma [ 1974] developed a two-equation turbulence model

from the low-Reynolds number turbulence model proposed by Jones and Launder

[ 1972]. The TKE and TDR equations used by Launder and Sharma are of the form

defined by equations (2.19) and (2.20), with the empirical constants, damping

functions, and extra terms defined as follows.

Empirical Constants:

C1 = 1.44 (2.45)

C2 = 1.92 (2.46)

C_ = 0.09 (2.47)
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ak = 1.0 (2.48)

_E = 1.3 (2.49)

Damping functions:

f_t = ex _ -3,4 ](1 + Ret/50) 2 (2.50)

fl = 1.0 (2.51)

f2 = 1.0-0.3exp[- Re 2] (2.52)

Low-Reynolds Number Terms:

E
(2.54)

2.6 Transition Models

This section presents an outline of the proposed transition models of

Schmidt [1987] and Johnson [1987] that are examined in this thesis. As numerical

calculations are marched downstream, TKE is convected and diffused into the

boundary layer from the freestream. As the calculations proceed, the production

term for the TKE equation (Pk = I.It(_U/_Y) 2) becomes significant and in turn in-

creases the local value of TKE. With an increase in TKE, the turbulent viscosity

(t-tt) begins to increase (see equation 2.17), which in turn increases Pk, which in
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turnfeedstheprocessevenmore. This nonlinearincreasein TKE continuesuntil

the laminarboundarylayer"naturallytransitions"to a fully turbulentboundary

layer. Thetransitionprocessis initially controlledbythediffusionof TKE into the

boundarylayerfrom thefreestream.This diffusionprocessmayexplainwhy two-

equationturbulencemodelsdonotpredicttransitionfor low freestreamturbulence
intensitylevels,asdiscussedby LaunderandSpalding[1974]. It appearsthatthe

diffusionof TKE into theboundarylayerandthenonlinearsourcetermsof the

TKE andTDR equationsarethedriving forcefor transition.Theseobservations

leadSchmidtto exanainewaysto modify thebehaviorof theproductiontermof the

TKE equationduringthesimulatedtransitionprocessin orderto improvepredic-

tions. Theslightdifferencesin thetwoproposedtransitionmodelsareenhancedby
examiningthegoverningtransitionmodelequations.

Schmidtproposedamethodof simulatingtransitionby controllingthe

growth rate of TKE in the boundary layer. He felt that the process by which small

disturbances are amplified in an unstable boundary layer is time dependent, while

the governing equations are in steady state form. The time scale for the production

modification would simply be related to the local convective velocity. The pro-

posed PTM model Schmidt developed to control transition is

[_Pk l
-"_--Jmax = A*Pk + B, (2.55)

where A and B are empirical parameters.

The idea of using two independent parameters in Schmidt's model was to

control the start and end of transition. Equation (2.55) can be converted from a

time derivative form into a spatial derivative, for use in a boundary layer code, by

using the local convective velocity as follows

APk.max = (A*Pk,old + B) dx (2.56)
U'



51

whereAPk, max is the the maximum allowable change in the production of TKE at

the current integration step, Pk,old is the level of production of k from the previous

integration step, dx is the the integration step size, and U is the local convective

velocity at the y-location in the boundary layer.

A detailed outline of the numerical implementation of Schmidt's transition

model is not outlined here (for details see Schmidt, 1987) but essentially the model

compares (Pk.new " Pk,old) tO APk.max at each computational grid point, then uses

the minimum value to calculate Pk,new at each point. In examining the model form

of the TKE and TDR transport equations, it is noted that the production of dissipa-

tion term in equation (2.20) is proportional to the production of TKE term in equa-

tion (2.19). Schmidt did not modify the production of TKE term in the TDR trans-

port equation. The empirical constants, A and B, were determined through a set of

calibration tests designed to isolate the effects of the PTM model from the effects of

the diffusion of freestream TKE. Schmidt provides the calibrated curves for A and

B as a function of freestream turbulence intensity for use with the Lain and

Bremhorst [198 I] and Launder and Sharma [1974] two-equation turbulence

models. Schmidt calibrated the A and B curves by adjusting these constants until

numerically predicted start and end of transition a_eed with the correlations of

Abu-Ghannam and Shaw [1980].

Johnson [1987] proposed a method similar to Schmidt to numerically pre-

dict transitional flow. Johnson believed the amplification of small disturbances in

an unstable boundary is spatially dependent. The method proposed by Johnson for

controlling the growth rate of TKE and thus controlling the transition process is

[_Pk]
-ffx-xJmax = a*Pk. (2.57)

From equation (2.57), the maximum change in Pk allowed by the transition model

becomes
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APLmax= (0_*PLold)dx. (2.58)

Thenumericalimplementationof equation(2.58)issimilar to themethodusedby

Schmidt.Johnsonusedtheexperimentalflat platezeropressuregradientdataof
Blair andWerle[1980] tocalibratetheempiricalconstant,a, to matchtheexperi-

mentaltransitiondata.Johnsonpresentsacalibrationcurvefor o_asa functionof

freestreamturbulenceintensityfor theK. Y. Chientwo-equationmodel. In the

processof furtherevaluatingtheperformanceof Johnson'stransitionmodel,sev-

eralerrorswerefoundin theimplementationof theoriginalmodel,which leadto a
variationof Johnson'stransitionmodel.

TheUniversityof Texastransitionmodelusesthethemeof Johnson's

transitionmodelin conjunctionwith Schmidt'snumericalschemefor calculatingthe

growthrateof TKE. TheUniversityof Texasproposedtransitionmodelis

_Pk]
-_x Jrnax = ot*Pk + 13 (2.59)

where a and 13are empirical parameters. In early investigations of Johnson's

transition model, it was determined that the 13constant is needed in an attempt to

adequately control the end of transition. The maximum change in the production of

TKE for each computational grid point becomes

APk.max = (a*Pk,old + 13)dx. (2.60)

Again, the implementation of equation (2.60) is similar to the method used by

Schmidt.

As mentioned in Chapter 1, the goal of this thesis was to assess the transi-

tion prediction capabilities of Schmidt's transition model (equation 2.55) and The
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Universityof Texastransitionmodel(equation2.59)whenusedin conjunction
with theK. Y. Chienturbulencemodel. It washopedthatacomparisonof the

thesetwo transitionmodelsagainstvariousexperimentaltransitiondatasetswould

detailthepredictioncapabilityof atemporallyor spatiallybasedtransitionmodel,

focusingon theeffectthe localconvectivevelocity (seeequation2.56)hason the
modelingof thetransitionprocess.However,asdiscussedin Chapter4, a problem

associatedwith theK. Y. Chienmodelfor low-Reynoldsnumberflows wasiden-

tified whileexaminingthetransitionpredictioncapabilitiesof Schmidt'stransition

model. Therefore,dueto thelow-Reynoldsnumberproblemwith theK. Y. Chien

model,thetransitionpredictioncapabilitiesof TheUniversityof Texastransition
modelarenotdetailedin this thesis.



Chapter 3

Initial and Boundary Conditions

3.0 Introduction

The partial differential equations describing boundary layer flows are

parabolic, v, hich means the downstream transport properties are dependent, at
i

most, on the values of the upstream transport properties. The required conditions

to solve a set of parabolic equations are initial profiles for each dependent variable

for "all y at a specified x-location and boundary conditions at two positions in space

for each dependent variable at all x greater than or equal to the initial x-location.

The solution of parabolic equations is often carried out using a finite difference

"m:=,ching technique" where the solution starts at the initial x-location, i.e. the loca-

tion of the initial profiles, and marches forward in space. Figure 3.1 is an example

of the extent of the computational domain defined for a boundary layer flow. The

solution accuracy for a set of parabolic equations depends on the initial and bound-

a n, conditions.

The initial profiles and boundary conditions defining a valid solution are

i:enerated by a computer code called TEXIPBC, developed as part of this thesis, to

calculate initial profiles and boundary conditions, for laminar or turbulent boundary

layer flows, which are in turn used as input data to TEXSTAN. This chapter de-

tails the method used by TEXIPBC to calculate proper initial and boundary condi-

tions to model transitional boundary layer flows.

54
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3.1 Initial Profiles

The dependent variables calculated by TEXSTAN are the streamwise veloc-

ity (I._7),the stagnation enthalpy (I*), the turbulent kineuc energy (k), and the turbu-

lent dissipation rate (_). Well-posed initial profiles are essential to assure accurate

results near the starting x-location. If incorrect initial profiles are implemented, a

solution to the governing equations generally results in an evolution of the profiles

into a form that is compatible with the equations and the boundary conditions.

However, until the profiles are corrected, the wall shear and heat transfer results

will be inaccurate. Furthermore, the profiles that evolve may be significantly dif-

ferent in thickness than were originally specified. This leads to a boundary layer

solution to a flow with a different momentum Reynolds number than initially spec-

ified. This section defines the method used by TEXIPBC to gent :ropriate

initial profiles for the dependent variables. As will be shown, the specification of

initial profiles for U and I" are well documented while the profiles for k and E re-

quire physical arguments.

3.1.1 Velocity Profiles

If a low-Reynolds number flow flow is considered laminar, the initial ve-

locity profile will be a laminar velocity profile. Consider steady flow without tur-

bulence over a semi-infinite flat plate aligned with the flow, with a constant

freestream velocity, Ue, and constant fluid properties. Equations (2.11) and (2.14)

may be rewritten as

and

_U OV

+ Oy o (3.1)

u v oU IdP
_x + -_y _y2 p dx. (3.2)
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The pressure gradient term of equation (3.2) is expressed in terms of the

freestream velocity gradient by examining Euler's equation for flow along a

streamline

de=
Oe ,-2-v • (3.3)

Differentiating equation (3.3) with respect to x leads to

d P_P= dUe (3.4)dx - peU_ . •

The freestream velocity is assumed constant over a flat plate, dUe/dx = 0; therefore

equation (3.4) reduces to

d__PP= 0. (3.5)
dx

as

Combining equations (3.5) and (3.2), the momentum equation is rewritten

uOU vaU
Ox + _y = V--_y2

(3.6)

The boundary conditions for equation (3.1) and (3.6) are

wall boundary condition for U: U(x,y=0) = 0.0, (3.7)

wall boundary condition for V: V(x,y=O) = 0.0, (3.8)

freestream boundary condition for U: U(x,y--+oo) = Ue(x), (3.9)
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One approach to solving equations (3.1) and (3.6) is to use a similarity

transformation which reduces the given partial differential equations to ordinary dif-

ferential equations that are easier to solve. The use of a similarity parameter implies

that the velocity profiles at all x-positions are geometrically similar, differing only

by a multiplying factor in the y-direction. One similarity transformation used fre-

quently for boundary layer flows utilizes the Blasius similarity variable

y_l_e (3.10)
"_ = ¢'2-_ "

The similarity transformation of equations (3.1) and (3.6) yields the Blasius

equation (detailed in Kays and Crawford, 1980), where the prime denotes differen-

tiation with respect to rl

f"' + ff" = 0, (3.11)

where, f"(rl) is the nondimensional wall shear stress; f(rl) is the nondimensional

velocity; and f(rl) is the nondimensional strean- • :_ction. The boundary conditions

(3.7) to (3.9) are transformed to

f(n---o) = o, (3.12)

f'(q=0) = 0, (3.13)

f'(rl=o*) = 1. (3.14)

There is no analytical solution to the Blasius equation, but it may be solved

numerically. Using the Runge-Kutta routine provided by White [1974], equation

(3.11) is solved in TEXIPBC to provide an initial laminar velocity profile.
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In thestagnation-pointregion,suchasfor cylindersin cross-flowandtur-

bineblades,andequations(3.1)and(3.2)governthe flow field since the pressure

gradient is no longer zero. A Falkner-Skan similarity transformation may be used

to transform the partial differential equations of (3.1) and (3.2) into the following

ordinary differential equation

f"'+ ff"+(1 - f'2) = 0. (3.15)

Equation (3.15) is subject to the same boundary conditions (equations 3.12 to

3.14) as equation (3.11). TEXIPBC may be used to calculate the initial velocity

profile for either a flat plate geometry (equation 3.11) or for a turbine airfoil geome-

try (equation 3.15).

3.1.2 Stagnation Enthalpy Profiles

The initial stagnation enthalpy profile is based on a direct extension of the

similarity solution for velocity profiles. Assume steady flow without turbulence

over a semi-infinite flat plate with constant freestream velocity, constant fluid prop-

erties, and constant plate surface temperature. A constant plate surface temperature

means the thermal boundary layer will develop along with the momentum boundary

layer from the leading edge of the plate. The stagnation enthalpy is nondimen-

sionalized as follows to aid in the analysis of the thermal boundary layer

't: = I'(x,y)-I:,(x,y)

le(x,y) - l_(x,y)
(3.16)

where 't is the nondimensional stagnation enthalpy distribution.

The governing equation for stagnation enthalpy neglecting turbulence fluctuations

and viscous dissipation is written as follows from equation (2.27)
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U_I* V_I * _2I* (3.17)

Equation(3.17)maybewrittenin nondimensionalform usingequation(3.16),

+ b2t
by = a--_y2

(3.18)

Equation (3.18) is the nondimensional stagnation enthalpy governing equation.

Assuming temperature prescribed boundaries, the boundary conditions for equation

(3.18) are

wall boundary condition for 't: 'c(x,y=0) = 0, (3.19)

freestream boundary condition for x: x(x,y--,*o) = 1. (3.20)

Equation (3.18) is similar to equation (3.6), which is the hydrodynamic

equivalent to this problem. A similarity transformation for equation (3.18) is de-

veloped using the Blasius similarity variable (equation 3.10) and the stream func-

tion, • (for details see Kays and Crawford, 1980). After performing the required

steps, the transformed nondimensional stagnation enthalpy equation may be ex-

pressed as (the primes denote differentiation with respect to rl)

x"+Prfz' = 0, (3.21)

where "t' is the nondimensional temperature gradient, f is the nondimensional stream

function, and Pr is the molecular Prandtl number. Equation (3.21) is the ordinary

differential equation reduced from the partial differential equation (3.18), which is
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thegoalof asimilarity transformation.Theboundaryconditionsfor equation

(3.21)are

(n=O) = 0, (3.22)

To specifytheinitial stagnationenthalpyprofile, equation(3.21)issolvedby

TEXIPBC usingthesameRunge-Kuttasubroutinedevelopedto calculatethe initial
velocity profile.

3.1.3 Turbulent Kinetic Energy Profiles

A difficult task in calculating transitional flows is the specification of

TKE profiles. There is virtually no experimental data available that details the TKE

profile in the presence of high freestream turbulence [Rodi and Scheuerer, 1985a].

Due to the lack of information, most TKE profiles are developed on an ad hoc ba-

sis. There are some constraints, however, that the TKE profile must abide by:

(1) The TKE must vanish at the wall (i.e. when y = 0).

(2) The TKE profile must increase as y2 in the near-wall region
based on an asymptotic expansion of the fluctuating velocity
components [Patel, et al., 1985].

(3) The TKE profile must asymptotically approach the freestream
value of TKE at the boundary layer edge.

With these few constraints, adequate initial TKE profiles can be calculated.

One method for defining a TKE profile which meets all of the above

criteria was proposed by Rodi and Scheuerer [1985a, 1985b], which is of the form



62

where,

k(T1)= 1% (U_¢t 2 = ke(f')2 (3.24)

1% = 1.5 (Tue Ue) 2 (3.25)

It is easily seen how equation (3.24) may be used with a Blasius solution to gener-

ate a simple TKE profile. From equation (3.24), it is evident that the TKE profile

proposed by Rodi and Scheuerer is a monotonic increasing profile. Figure 3.2

shows an example of a general TKE profile generated by equation (3.24). Figure

3.3 demonstrates how the goveming equations alter the TKE profile specified by

Rodi and Scheuerer's method as soon as the calculations are started. In Figure 3.3,

the scaling parameter k/kmax has been used to examine the overall shape of the TKE

profiles. The change in the TKE profile, in Figure 3.3, from Rein = 3.1 to Rein =

20.1 implies the initial TKE profile is not in "equilibrium" with the specified veloc-

ity and TDR profiles as well as the finite-difference form of the K. Y. Chiev. turbu-

lence model. The change in the initial TKE profile suggests a different methoc; to

calculate initial TKE profiles could be used.

An alternate method for creating initial TKE profiles has been proposed by

Reshotko [ 1988] that meets all the required criteria. The initial TKE profile pro-

posed by Reshotko contains a distinct peak in the profile near the wall with an

asymptotic trend to the freestrearn TKE value at the boundary layer edge. The

Reshotko TKE profile (see Appendix B for derivation) is defined as

k(rl) = 1%!f'+ 0.5qf"] 2 (3.26)

where f and f" are defined for a Blasius solution. Figure 3.4 shows a comparison

of the Reshotko TKE profile with the Rodi and Scheuerer TKE profile under the

same flow conditions. The initial condition criteria stated by Reshotko to define the

starting location for the TKE profile is
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Figure 3.2. Turbulent kinetic energy initial profile based on the method of RocU
and Scheuerer [ 1985a].
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Figure 3.4. Comparison of the Reshotko [1988] initial turbulent kinetic profile to
the initial turbulent kinetic energy profile of Rodi and Scheuerer
[1985a].
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Rex < 0.01
(Tu) 2 • (3.27)

Figure 3.5 shows how TKE profiles evolve from the initial TKE profile generated

by equation (3.26). Comparing Figures 3.5 and 3.3, demonstrates how the finite-

difference solution alters the initial Reshotko TKE profile as compared to the initial

Rodi and Scheuerer TKE profile. For the first two profile locations of Figure 3.5

(Rein = 2.1 and Rein = 20.3), the Reshotko initial profile does not appear to be al-

tered as much as the Rodi and Scheuerer initial profile. The Reshotko TKE profile

appears to be in "equilibrium" with the other dependent profiles as well as the fi-

nite-difference equations of the K. Y. Chien turbulence model. Equation (3.26)

was incorporated in the Runge-Kutta routine of TEXIPBC to calculate initial TKE

profiles.

Examining initial TKE profiles demonstrates that an initial TKE profile that

matches the numerical behavior of a K. Y. Chien turbulence model does match the

numerical behavior of a Jones and Launder [1972, 1973] type turbulence model at

low-Reynolds numbers. For example, the Reshotko TKE profiles used in this

study for the K. Y. Chien turbulence model were not numerically compatible with

the Launder and Sharma [1974] turbulence model, a derivative of the Jones and

Launder [ 1972, 1973] turbulence model. Instead, the Rodi and Scheuerer initial

TKE profiles were more in agreement with the numerics of the Launder and

S harma turbulence model. Therefore, the behavior of the damping functions and

the low-Reynolds number terms of any two-equation turbulence model at low-

Reynolds numbers dictate the form that the initial TKE profile will assume.

Whether the evolved form of TKE profile, subject to the particular turbulence

model being used, is correct or not is subject to debate.

One source of information concerning developing turbulent profiles,

specifically TKE profiles, is the study of turbulized laminar flow. A developing

flat plate boundary layer in the presence of high freestream turbulence levels can be
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termed"pseudo- laminar",sinceit differsbothfromthepurely laminar layer and

from the turbulent layer at low turbulence [Dyban, et al., 1976]. This "pseudo -

laminar" layer is turbulized by the penetration of freestream turbulence into the

boundary layer. From research conducted on turbulized laminar boundary layers

(Dyban, et al., 1976, Dyban and Epik 1978, and Motulevich, et al., 1984), it is

noted that the TKE profile for a turbulized boundary layer does not monotonic in-

crease as shown by the Rodi and Scheuerer TKE profile. Instead the TKE prof'fle

has a distinct peak in the profile near the wall and an asymptotic trend to the

freestream TKE value at the boundary layer edge like the Reshotko TKE profile.

Research into the turbulized laminar boundary layers may provide information that

leads to new forms of damping functions and low-Reynolds number terms for two-

equation turbulence models to obtain "physically" correct turbulent profiles at low-

Reynolds numbers.

3.1.4 Turbulent Dissipation Rate Profiles

Experimental data for calculating a TDR profile does not exist; therefore,

more flexibility exists for defining (or misdefining) the initial TDR prof'de. As with

the TKE profile, the TDR profile also has some constraints that must be met before

the profile is considered valid.

(1) The TDR profile must asymptotically approach the freestream value of
TDR at the boundary layer edge.

(2) Near the wall, the TDR profile must be proportional to y2 [Patel, et
al., 1985] for the K. Y. Chien turbulence model.

The initial TDR profile used in this study assumes the dissipation rate is

proportional to the production rate of TKE, as proposed by Rodi and Scheuerer and

others
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= k OU (3.28)

m A

where al is a turbulence structural coefficient, - u'v'/k. The e-values described by

equation (3.28) approach zero at the boundary layer edge; therefore, an additional

equation was imposed by Rodi and Scheuerer,

where

_: > _ (3.29)

A

Ee = kel'5 (3.30)
Le

This condition insures that the length scale at any location within the boundary layer

does not exceed the freestream length scale, Le.

Figure 3.6 shows an example of a general TDR profile generated by equa-

tion (3.28). In using equation (3.28) in TEXIPBC it was noted that large gradients

in _. near the freestream are calculated for certain combinations of_ and al, namely

for a small value of_ coupled with a moderate to large value for al. Freestream

gradients should be avoided for initial profiles because it signifies the edge of that

boundary layer has not been properly located. The TKE and TDR shear layer

thicknesses are constrained initially to the velocity boundary layer thickness (8) be-

cause 8 is the only known shear layer thickness at the start of the calculations.

In summary, equation (3.28) is used from the wall to the peak in the TDR

profile, but, to eliminate the creation of freestream gradients, a cubic polynomial

was fit between the peak to the freestream TDR level. The cubic polynomials fit

both magnitude (_ and _max) and slope (zero slope conditions) at both ends of the

domain. Figure 3.7 shows, as a comparison, the initial TDR profile calculated

from equation (3.28) with and without the cubic polynomial fit to eliminate the

freestream gradient for small _. Figure 3.8 shows that TEXSTAN does not alter

the initial TDR profiles for y/8 < 0.5, however; for y/8 > 0.5 the TDR profile is
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modifiedsincetheshearlayerthicknessfor theTDR profile is differentthanthe

velocity shearlayerthickness.Equations(3.28),equation(3.29),andthecubic

polynomialfit areusedin TEXIPBCto calculateTDR initial profiles.

3.2 Boundary Conditions

The solution to a set of parabolic equations depends on the boundary condi-

tions at the wall and the freestream locations. As with the initial profiles, boundary

conditions must be defined for each of the dependent variables. For TEXSTAN,

each of the dependent variable boundary conditions have different effects on the de-

veloping boundary layer. The freestream velocity boundary condition defines the

freestream pressure gradient, affecting the growth of the boundary layer. The

freestream stagnation enthalpy boundary condition is a source for heat transfer be-

tween the freestream and the wall. The freestream TKE and TDR boundary condi-

tions define the freestream turbulence affects on the boundary layer, especially in

the laminar and transitional regions. This section outlines the methods used by

TEXIPBC to calculate the various dependent variable boundary conditions.

3.2.1 Velocity Boundary Conditions

For boundary layer flows with a wall and freestream, the boundary condi-

tions for the momentum equation, assuming no wall mass n-ansfer, are defined by

equations (3.7) to (3.9). The velocity boundary condition reduces to a problem of

calculating Ue(x). Numerical boundary layer codes typically can not use a raw ex-

perimental freestream velocity distribution as a boundary condition because small

experimental errors in the discrete velocity measurements greatly influence the cal-

culation of gradients. The importance of a smooth velocity distribution can not be

overstated, even though the velocity distribution may appear smooth it does not

guarantee the velocity gradient will be smooth. As shown in equation (3.4), the
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pressuregradientusedin themomentumequationmaybeexpressedasafunction

of thefreestreamdensity,freestreamvelocity,andfreestreamvelocity gradient. If

the inputvelocitydistributionis notsmooth,thenthevelocitygradientcalculation

will introducelargeerrorsin thepressuregradientcalculation,whichwill affectthe
solutionof themomentumequation.

If derivativevaluesmustbecalculated,theuseof a least-squares polyno-

mial (or spline) fit is recommended to smooth the data before differentiating it

[Carnahan, et al., 1969]. This method was used by the author in creating

TEXIPBC. Input to TEXIPBC consists of some form of freestream data such as

freestream velocity distribution, freestream Mach number distribution, freestream

pressure distribution, or freestream pressure coefficient (Cp) distributiora. The

data, often called loading data, may be either raw experimental data or data from an

inviscid Euler solution. The loading data is then processed through a least-squares

cubic spline routine, called ICSVKU [IMSL, 1984], to obtain a smooth continuous

distribution of loading data. The degree of smoothing of the loading data is a func-

tion of the number of knots selected by the user. A knot is a point between which

two cubic polynomials are joined. At each knot location the function, its ftrst

derivative, and its second derivative are matched. Figure 3.9 shows the matching

conditions at each knot location for a simulated spline curve.

The degree of smoothness and acceptable fit to the original data is a function

of the number of knots selected and the judgement of the user. The more knots that

are used the less smooth the final loading diswibution becomes, ano conversely, the

fewer the knots used the smoother the resulting loading distribution becomes.

Appendix C demonstrates the affect the number of knots has on the degree of

smoothing for a given loading distribution. From the smoothed loading data, a

smooth velocity distribution may be calculated using the far-field s_::gnation condi-

tions and one-dimensional compressible gas equations. The final smoothed veloc-

ity distribution is then used by TEXSTAN as the freestream velocity boundary

condition.
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An added feature of TEXIPBC is its ability to calculate the pressure gradient

in the same manner as TEXSTAN. The smoothed velocity distribution is pro-

cesscd through a "not-a-knot" spline which calculates the velocity gradient and re-

sulting pressure gradient at each boundary condition location. This option in

TEXIPBC allows the user to see approximately how TEXSTAN will calculate the

pressure gradient without having to actually run TEXSTAN. The "not-a-knot"

spline used in TEXIPBC and TEXSTAN requires the second derivative at each

endpoint of the curve to be specified. Since, these derivatives are unknown, an

extrapolation method is used to estimate the second derivative at the endpoints.

This extrapolation method can lead to slight-to-moderate errors in the pressure gra-

dient near the leading and trailing edge of the solution domain even though the input

velocity distribution is smooth.

3.2.2 Stagnation Enthaipy Boundary Conditions

The boundary conditions for the stagnation enthalpy equation are as follows

or,

wall boundary condition for I*: X'(x,y=0)= I,'4x) (3.31)

and,

wall boundary condition for q": q"(x,y=0) =- k bl'{x,Y =0) = q_(x) (3.32)
c by

freestream boundary condition for I': I'(x,y---+**} = I: (x) = constant (3.33)

The wall stagnation enthalpy level or wall heat flux are usually specified from ex-

periment and as a result they are known quantities. The specification of the stagna-

tion enthalpy boundary conditions reduces to a problem of calculating I_ (x}. The
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far-field flow conditions(Uf,Tf, andPf,etc.)for agivenexperimentareusually

known. Therefore,thefar-field staticenthalpyis calculatedviaair propertytables

or assumingair is acaloricallyperfectgasandknowingthefar-field temperature.
Fromthesevariablesthestagnationenthalpyof theflow canbecalculatedas

If = If+ U_ ...le(x) (3.34)
2 g¢ cj

where gc and cj are the force-mass and work-energy conversion constants. By

definition, the stagnation enthalpy is constant outside the boundary layer provided

there is no entropy generation, i.e. no curved shock waves or chemical reactions in

the flow. Hence, the freestream stagnation enthalpy boundary condition will be

constant and equal to the far-field stagnation enthalpy. On the other hand, the

freestream static enthalpy will change if the freestream velocity varies due to a

change in the contour of the body.

3.2.3 Turbulent Kinetic Energy and Turbulent Dissipation Rate

Boundary Conditions

The boundary conditions for the TKE and TDR governing equations for the

K. Y. Chien two-equation turbulence model are as follows

wall boundary condition for TKE:

freestream boundary condition for TKE:

wall boundary condition for TDR:

freestream boundary condition for TDR:

k(x,0) = 0.0 (3.35)

k(x,8) = l%(x) (3.36)

A

e(x,0) = 0.0 (3.37)

A

_(x,_i) = _(x) (3.38)
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Assumingall cross-streamgradientsvanish as y _ **, the governing equa-

tions describing the TKE and TDR boundary conditions may be derived from

equations (2.19) and (2.20) as follows

uo = -L-D,
dx

(3.39)

-'2

Ue d.__dx=" C2 t"2 _- E , (3.40)

The D and E are the extra low-Reynolds number (LRN) ten:l: defined by equations

(2.43) and (2.44). Equations (3.39) and (3.40) are ordinary differential equations

because the y-dependence of the variables has been eliminated at the freestream.

Specifying Ice and _ at the initial boundary condition, i.e. x -- 0, is sufficient to
A

define k_. and ee at all subsequent x-locations by integrating equations (3.39) and

(3.40). As a result, TEXSTAN does not require TKE and TDR to be specified at

each x-location, instead, accurate initial values for TKE and TDR are the only re-

quirement.

Tile freesn'eam length scale for a turbulent boundary layer is defined by di-

mensional arguments as

L_ = _,, , (3.41)

ee

For grid generated turbulence, the freestream length scale should increase with in-

creasing x-distance [Tennekes and Lumley, 1972]. Upon examining equation

(3.39) and (3.40) a problem with calculating the freestream TKE and TDR bound-

ary condiuons for the K. Y. Chien two-equation turbulence model was discovered.

Inserting equations (2.43) and (2.44) into equations (3.39) and (3.40) yields



79

and

U dke = " 21aeke (3.42)
edx -Ee- Peye2

^ ^2 ^

-_x C_.e_.-2ge__,_.exp{_0.5 ye+).Ue = - C2 f21% y_
(3.43)

The second term on the right-hand side of both equations (3.42) and (3.43) contain

1/ye 2 factors. For transitional studies, the initial profiles are laminar, and as a re-

sult, the boundary layer thickness, 8 = Ye, is very small. Therefore, in equation

(3.42), the LRN term tends to be on the same-order-of-magnitude as the freestream

dissipation term. In equation (3.43), the LRN term is several orders-of-magnitude

smaller than the freestream dissipation term and has a negligible effect. When
A

equations (3.42) and (3.43) are integrated to obtain I% and v_ distributions, 1%

tends to decay more rapidly than physically justified due to the affect of the LRN

term. The resulting freestream length scale distribution will decrease rather than in-

crease, contradicting the basic length scale behavior for grid generated turbulence.

The freestream length scale will eventually increase but not until the flow has been

fully turbulent for some distance. The length scale begins to increase because the

turbulent boundary layer is thicker than a laminar boundary layer which results in a

smaller 1/ye2 factor and correspondingly a smaller LRN term in equation (3.42).

To correct the freestream length scale problem associated with the K. Y.

Chien two-equation model, the LRN terms were ignored when calculating the

freestream TKE and TDR boundary conditions. Neglecting the low-Reynolds

number terms, the K. Y. Chien governing equations for the freestream TKE and

TDR distributions become

and

"2

U ed_ = .C2t'2ee
dx ke "

(3.44)

(3.45)
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Equations(3.44)and(3.45)arenot thelruegoverningequations to calculate the

freestream TKE and TDR distributions for the K. Y. Chien turbulence model.

Therefore, by using equations (3.44) and (3.45) there is a possibility of introducing

a discontinuity in the boundary layer length scale distribution. However, calcula-

tions for fiat plate Cf distributions with and without the LRN terms in the

freestream governing equation did not show any variations in the Cfpredictions. A

freestream discontinuity in the boundary layer length scale distribution does not ef-

fect the Cf predictions of TEXSTAN. The length scale distribution for these tests

increased with increasing x-distance which demonstrates that the LRN terms in

equations (3.42) and (3.43) are not physically realistic when applied at the

freestream location. Equations (3.44) and (3.45) are the governing differential

equations used in TEXSTAN to calculate the freestream TKE and TDR boundary

conditions when using the K. Y. Chien two-equation turbulence model.

Figures 3.10 to 3.12 are plots of the K. Y. Chien turbulence model simula-

tion of the decay of ke and _ along with the freeslream length scale, I._, distribution

for the grid 1 (Tue,i = 1.3%), grid 2 (Tue.i -- 2.6%), and grid 3 (Tue,i ---6.2%)

freestream turbulence level distribution of Blair and Werle's [1980] experimental

transition studies. Equations (3.44) and (3.45) were used to calculate the

freestream TKE and TDR levels and equation (3.41) was used to calculate the

freestream length scale. Figure 3.10 is a plot ofke versus x for all three grid cases

of Blair and Werle along with the numerical simulation for the decay of ke. As

shown in Figure 3.10, ke,i increases and the slope in the decay curve for ke in-

creases as the freestream turbulence level increases. Figure 3.11 is a plot of _ ver-

sus x for all three grid cases of Blair and Werle. Figure 3.11 shows how _.i has a

nonlinear increase as the freestrearn turbulence level is doubled. Figure 3.12 is a

plot of Le versus x for all three grid cases of Blair and Werle. As discussed before,

the freestream length scale should increase as a function of x. Figure 3.12 shows

that with the corrections made to equations (3.44) and (3.45) the freestream length

scale distribution does increase with increasing x distance.
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The most accurate method for obtaining proper values for ke(x=0) and

_dx=0) requires the knowledge of the decay of freestream turbulence provided by

experimental results. From the knowledge of the decay of Tue(x), equation (3.25)

may be used to obtain the corresponding ke(x) distribution. The difficulty of speci-

fying edx=0) is solved by simply creating a computer code that integrates equations

(3.44) and (3.45) given a value for k_(x=0) and an initial guess for _:dx=0). The

resulting numerical ke(x) distribution may be graphically compared with the exper-

imental l%(x) distribution to see if the initial guess for _.dx=0) results in the proper
A A

decay of ke(x). If the initial edx=0) value is not correct, another guess for edx=0)

is made and the numerical calculation is conducted again. This process continues

until the guess for _(x=0) results in a numerical ke(x) distribution that matches the

experimental ke(x) decay. As mentioned in Chapter 1, for accurate numerical

turbulence modeling, the freestream turbulence level must be specified at a
A

minimum of two locations in order for the initial ee boundary condition to be

calculated.

For the case when only one value of the freestream turbulence level is

known, a method to estimate the correct initial ee value has been developed by the

author. From the grid generated turbulence studies of Comte-Bellot and Corrsin

[ 19661, it was noted that the longitudinal length scale could be approximated by a

power law fit

Le = (x- xl) m (3.46)

where m ---0.34 and xl is the apparent origin of the length scale growth. A com-

puter code was developed that solved equations (3.44) and (3.45) subject to the
P,

given l%(x=0) and an initial guess for edx=0). At each x-station of the integration

the freestream length scale is calculated accordit:g to equation (3.41). Upon com-

pletion of the numerical calculation, the slope of the numerical L_-distribution is

compared with the slope, m, measured by Comte-Bellot and Corrsin. If the slopes
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do notmatch,anewguessfor _dx=0) ismadeandthecalculationsareconducted

again. Eventually,avalueof _(x--0) is foundwhichallowstheslopeof thenu-
mericalLe-distributionto matchtheslopeof thepowerlaw fit of Comte-Bellotand

Corrsin.



Chapter 4

Numerical Simulation of Transition

4.0 Introduction

This chapter compares the simulation capability of Schmidt's proposed

transition model, equations (2.55), coupled with the K. Y. Chien two-equation tur-

bulence model. The first section examines the sensitivity of the "natural transition"

behavior of the K. Y. Chien model to the initial turbulence profiles. The "natural

transition" process is a built-in transition model that all two-equation turbulence

models possess to simulate laminar-to-turbulent flow via the diffusion of TKE and

TDR from the freestream boundary. A sequence of computational tests were con-

ducted to evaluate the influence that the initial turbulence profiles have on "natural

transition", which must be known if the effects of the transition models are to be

evaluated. The second section outlines the calibration method used to obtain empir-

ical model constants for the transition models and a comparison between the numer-

ical simulation of Schmidt's PTM transition model, equation (2.55), and the exper-

imental transition studies of Blair and Werle [1980]. From this comparison, a

problem associated with the K. Y. Chien two-equation model for transition studies

was identified. The third and final section defines the reason why the K. Y. Chien

two-equation turbulence model should not be used for transition studies.

4.1 Sensitivity of Starting Conditions on "Natural Transition"

The importance of initial profiles to the prediction of transition has been

demonstrated in the work by Rodi and Scheuerer [1985a, 1985b] and Schmidt

[1987]. In Rodi and Scheuerer's work, an improvement in transition predictions

86
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wasshownwith theuseof their "physically"realistick ande initial profiles. This

section examines the following questions, proposed by Schmidt [1987], in an

attempt to limit the influence inappropriate initial conditions have on transition

predictions,

1. How important to the transition predictions is the exact location at which the

calculations are started?

2. How important is the specification of the initial e profile to the prediction of

transition?

3. What are the quantitative differences in the transition predictions when the

freestream turbulence varies and how do these predictions compare with

known correlations?

The first question addresses problem of where to begin numerical calcula-

tions for accurate transition studies. Schmidt [1987] developed a consistent method

for determining the starting location for transition studies, and in contrast, for the

present work different k and e initial profiles were used in a different boundary

laver computer code. Therefore, a starting criterion for transition calculations must

be defined. The second question addresses the lack of information concerning the

definition of the e profile in a laminar boundary layer with high freest'ream turbu-

lence. The effect that the al structural coefficient for the initial e profile (equation

3.28) has on the boundary layer calculations is not known. Before the transition

models can be evaluated, the importance of well-posed initial turbulence profiles

must be assessed. The third question addresses the effect freestream turbulence

levels have on the behavior of two-equation "natural transition".

4.1.1 Effect of Starting Location on "Natural Transition"

A set of numerical experiments were conducted to determine the effect that

the starting location has on the "natural transition" prediction of the K. Y. Chien
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two-equationturbulencemodel. Thefollowingconditionsweremaintainedfor the

numericalexperiments(seeAppendix D for details of the numerical parameters)

* Flat plate flow to eliminate curvature effects

• dP/dx = 0 by using a constant freestream velocity

• Tue = constant = 3.0% by setting _ to a small value

• The _-profile structural coefficient, al, was maintained at 1.0.

The initial profiles for these numerical tests were generated using equations (3.11),

(3.21), (3.26), and (3.28). By setting al - 1.0 for this set of test cases, the initial

TDR profile did not influence the results and the behavior of the "natural transition"

due to the starting location could be examined solely. For these numerical tests, the

starting locations examined were for Rex equal to 10 °, 101, 102, 103, and 104.

The local friction coefficient, Cf, distribution is used to examine the transition

process over the flat plate, since Cf correlations for both laminar and turbulent flow

exist and serve as lower and upper bounds for evaluating the transition process.

Figure 4.1 is a plot of the fiat plate Cf distribution versus momentum

Reynolds number. This figure shows the sensitivity of the transition prediction to

the starting location. From Figure 4.1, it is noted that for Rex > 104 the transition

prediction is dependent on the starting location, but for Rex < 103 the transition

prediction is independent of the starting location. Since the Reshot._ : _ pro-

file criteria, equation (3.27), generates starting profiles at Rex less than 10_, the use

of this criteria for locating initial profiles will ensure the numerical transition pre-

dictions are independent of the starting location. Schmidt [ 198"7] a!so concluded

that the location of the transition became independent of the starting location for Rex

< 103.
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4.1.2 Effect of Turbulent Dissipation Rate Profile on "Natural

Transition"

This section examines the effect that the initial TDR profile has on the

"natural transition" process of the K. Y. Chien turbulence model. As discussed in

Section 3.1.4, the TDR initial profile contains a structural coefficient, al, which

acts as a scaling parameter. Since no experimental data exists for TDR prof'des, it

is not known what al should be set to in order to generate accurate initial TDR

profiles. To remedy this problem a set of numerical tests were conducted to de-

terrnine if the "natural transition" process would become independent of the initial

TDR profiles for certain values of al. For this set of numerical tests the following

conditions were maintained (see Appendix D for further details)

• Flat plate flow to eliminate curvature effects

• dP/dx = 0 by using a constant freestream velocity

• Tue = constant = 3.0% by setting _ to a small value

• The starting location is Rex = 101 (equation 3.27).

As with the previous sensitivity analysis, the initial profiles for these numerical

tests were generated using equations (3.11), (3.21), (3.26), and (3.28). From the

previous section, it was determined that setting the starting location to Rex <- 103,

will not influence the transition predictions. Different TDR initial profiles were

generated by setting al equal to 102, 101, 100, 10 -1, and 10 -2. The initial TKE and

velocity profiles were the same for each simulation, but each TDR initial profile had

the same basic shape but were scaled differently due to al.

Figure 4.2 is the plot of the Cf distribution versus momentum Reynolds

number for each set of initial profiles. As shown in this figure, the transition pre-

diction is independent of al when the calculations are started at Rex < 103. This

conclusion is consistent with what Schmidt [1987] observed.
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The "natural transition" process of two-equation turbulence models is con-

trolled by the transport of k into the boundary layer from the freestream. From the

numerical tests conducted so far, it appears that by moving the starting location up-

stream, the transition prediction becomes independent of the initial profiles; there-

fore the lack of information concerning the initial profiles for TKE and TDR does

not hinder transition modeling. By moving the starting location upstream, the

length over which k has an opportunity to diffuse and convect into the boundary

layer before reaching any particular downstream location has increased. The results

of the previous sensitivity analyses has been to create a criteria for initiating numer-

ical calculations that will not affect the "natural transition" process. With the

"natural transition" process unaffected, any proposed transition model may be im-

plemented into TEXSTAN and the resulting modification to the transition prediction

may be easily evaluated.

4.1.3 Effect of Freestream Turbulence Level on "Natural

Transition"

The effect of freestream turbulence on transition has been discussed by

Jones and Launder [1974] and detailed by Schmidt [1987]. As a further examina-

tion, this section outlines a set of numerical tests that were conducted to determine

the behavior of "natural transition" as computed by the K. Y. Chien two-equation

for various freestream turbulence levels. For these numerical tests the following

conditions were maintained (see Appendix D for further details)

• Flat plate flow to eliminate curvature effects

• dP/dx = 0 by using a constant freestream velocity

• The starting location determined from equation (3.27)

• The i-profile structural coefficient, al, was maintained at 1.0.
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Theinitial profilesfor thesenumericaltestsweregeneratedusingequations(3.11),

(3.21), (3.26),and(3.28). The testswereconductedfor freestreamturbulence

levels, Tue, ranging from 1.0% to 8.0%. To maintain a constant freestream turbu-

lence intensity, the freestream dissipation rate was set to 0.01.

Figure 4.3 is a plot of the Cf distribution versus momentum Reynolds

number for each freestream turbulence level. As expected, the start of transition

moves upstream with increasing freestream turbulence level due to the increased

diffusion of TKE from the freestream. Also evident in Figure 4.3 is that at higher

Tue levels (greater than 6.0%) the numerical Cf distribution is above the fully turbu-

lent Cf correlation for large Rein. The turbulent Cf correlation used in Figure 4.3 is

for negligible freestream turbulence; therefore, it should be expected that the numer-

ical Cf distribution be above the correlation at high freestream turbulence levels.

Correlations for Cf in the presence of high freestream turbulence do exist but the

strong nonlinear dependence of the Cf correlation on the freestream turbulence in-

tensity and the freestream length scale make the Cf correlation difficult to define

(see Hancock and Bradshaw, 1983). The turbulent Cf correlation used in Figure

4.3 (along with other figures) may be thought of as a gauge for determining the

fully turbulent behavior of a two-equation turbulence model at low freestream tur-

bulence levels. In Figure 4.3, the start and end of transition may be defined by the

low and high points in the numerical Cf distributions. For Tue < 2.0% the start and

end of transition is relatively easy to define; however, for Tue > 2.0% a distinct

start and end of transition can not be easily defined because of the shape of the Cf

distribution.

Abu-Ghannam and Shaw [1980] developed the following correlations for

estimating the start and end of transition for zero pressure gradient flows as a func-

tion of the freestream turbulence intensity

and

Rem,s = 163 + exp{6.91 - 100*Tue) (4.1)
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Rem,E= 2.667* Rem.s (4.2)

whereRerr_sis themomentumReynoldsnumberfor thestartof transitionand

Rem.Eis themomentumReynoldsnumberfor theendof transition. Figures4.4
and4.5areplotsof thestartandendmomentumReynoldsnumberasa functionof

freestreamturbulenceintensityfor thetestcasesdescribedabove.As shownin

Figures4.4 and4.5,thestartandendmomentumReynoldsnumbercouldonly be
definedfor thetestcaseswith Tue < 2.0%. For the other test cases a definitive start

and end could not be defined. From Figure 4.4, the onset of transition has the cor-

rect trend but it is consistently earlier than specified by the Abu-Ghannam and

Shaw correlation. In Figure 4.5, the correct trend is also observed, but as with the

start, the end of transition is consistently predicted early. Also noted from Figures

4.4 and 4.5 is that as the freestream turbulence level increases, the transition length

decreases but the numerical transition length is consistently shorter than the experi-

mental transition lengths of Abu-Ghannam and Shaw.

In summary, this section has investigated the effect that the initial turbulent

profiles have on the "natural transition" predictions of the K. Y. Chien two-equa-

tion turbulence model. It was shown that "natural transition" is sensitive to the

starting location of the initial profiles for Rex = 104. The reason for this depen-

dance has to do with the fact that the "natural transition" capability of two-equation

turbulence models is a function of the diffusion and conduction of TKE into the

boundary layer from the freestream, which of course is a function of the distance

over which the boundary layer has developed. However, the K. Y. Chien turbu-

lence model is not sensitive to the starting location for Rex < 103. The Cf distribu-

tion was shown to have no dependance on the structural coefficient of the dissipa-

tion profile as long as the initial profile begins at Rex -< 103. The independence of

the "natural transition" behavior to the scale of the initial i-profile is a benefit since

there is no experimental data available to calculate initial i-profiles. The "natural

transition" behavior of the K. Y. Chien turbulence model was shown to have the
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correct trends when compared to the data of Abu-Ghannam and Shaw, but the start,

end, and length of transition was consistently shorter than for experimental

measurements.

4.2 Numerical Simulations Using Schmidt's PTM Transition

Model

The purpose of this section is to determine if Schmidt's proposed transition

model will improve the transition capability of the K. Y. Chien two-equation turbu-

lence model when used in the TEXSTAN boundary layer computer code. In the

previous section it was shown that the "natural transition" predictions of the K. Y.

Chien turbulence model resulted in transition predictions with the correct trends but

with the start and end consistently predicted early, resulting in a short length of

transition. In this section, the calibration method and results for the transition

model proposed by Schmidt, equation (2.55), coupled with the K. Y. Chien turbu-

lence model in the TEXSTAN boundary layer code is discussed. Then the simula-

tion of the fiat plate heat transfer data of Blair and Werle [ 1980] using Schmidt's

PTM transition model and the K. Y. Chien model are compared to the experimental

data to determine the prediction capability of the transition model.

4.2.1 Calibration Procedure for Schmidt's PTM Transition Model

The transition model proposed by Schmidt controls the growth rate of TKE

in the boundary layer and thus controls the transition process. As shown in equa-

tion (2.55), two empirical parameters, A and B, must be calibrated for each two-

equation turbulence model. Schmidt obtained calibration curves for the A and B

empirical constants as functions of freestream turbulence intensity for the Lam and

B remhorst [ 1981 ] and Launder and Sharma [ 1974] two-equation turbulence mod-
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els. However,in this thesistheK. Y. Chientwo-equationturbulencemodelis

used;therefore,newcalibrationcurvesfor A andB mustbedeveloped.

Thestartandendof transitioncorrelationsproposedby Abu-Ghannamand

Shaw,equations(4.1)and(4.2),areusedto determinewhenthecorrectcombina-

tionof A andB allowsthenumericaltransitionpredictionto matchtheexperimental

correlationsfor agivenfreestreamturbulenceintensity. Sincethepredictioncapa-

bility of thetransitionmodelsarebasedon theA andB empiricalparameters,which

in turnarebasedon theexperimentalcorrelationsof Abu-GhannamandShaw,the
importanceof theseexperimentaltransitioncorrelationsisreadilyapparent.

Foragivenfreestreamturbulenceintensity,aseriesof computationaltests

wereconducted.Givenaninitial guessfor A andB, acorrespondingstartandend

of transitionisnumericallycalculatedandcomparedto theAbu-Ghannamand

Shawtransitioncorrelations.If theguessfor A andB doesnotyield thecorrect

startandendof transition,anotherguessfor theA andB ismade.This iteration

processcontinuesuntil givenvaluesof A andB yieldsastartandendof transition
thatmatchestheAbu-GhannamandShawcorrelations.

To reducethenumberof requiredguessesto determineA andB ateach

turbulenceintensity,it is suggestedthatthefollowing plottingmethodbeused.
Contourplotsfor Rem.SandRem.E as a function of A and B are used to track the

transition start and end momentum Reynolds numbers prescribed by equations

(4.1) and (4.2). By observing the trends of both the start and end momentum

Reynolds number contour plots, guesses for A and B are made until the Rer_s

contour line and the Rem, E contour line cross at the same combination of A and B.

It is at this cross-over point where the specified A and B will yield a Rem,s and

Rem,E that matches the Abu-Ghannam and Shaw correlations.

It should be noted that Schmidt used an additional stability criteria in con-

junction with his PTM transition model to control the production term of the k-
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equation. He believed that since the production term, Pk, is the model term that

simulates the amplification of perturbations in the boundary layer, there should be

some critical momentum Reynolds number, Rein,c, below which Pk should always

be insignificant. For Rein < Rein,c, Pk is maintained at zero. This critical momen-

tum Reynolds number criteria affects only the production of k and does not affect

the transport of k in the boundary layer for Rein < Rem.c. Schmidt believed Rem,C

should be approximately equal to 162, corresponding to the ToUmien-Schlichting

limit of stability. However, at high Tue levels transition occurs near Rein - 163

which does not allow sufficient time for the TKE to develop in the boundary layer.

Therefore Schmidt used Rem,c = 125 for all of his calculations. For low Tue, the

Rem,c affects are minimal. For the present study, Rem,c was set to zero and Pk

was calculated over the entire calculation domain. The reason for not using Rem,c

is due to the observations of Dyban et al. [1976] who stated that in the presence of

high freestream turbulence the boundary layer does not act as a laminar boundary

layer. Therefore, since the boundary layer is not purely laminar, the production of

k would not be suppressed and instead would be continually changing. Note that,

following Schmidt, modification of Pk in the production of dissipation was not

carried out.

4.2.2 Calibration of Schmidt's PTM Transition Model for the K.

Y. Chien Turbulence Model

The method for obtaining calibration curves for the A and B empirical con-

stants of Schmidt's PTM transition model coupled with the K. Y. Chien turbulence

model requires a series of numerical tests. The conditions for the calibration tests

were the same as discussed in Section 4.1.3,

• Flat plate flow to eliminate curvature effects

• dP/dx = 0 by using a constant freestream velocity

* The starting location determined from equation (3.27)
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Thee-profilestructuralcoefficient,al, wasmaintainedat 1.0

Thefreestreamdissipationrateis setto 0.01to maintainaconstant
freestreamturbulenceintensity.

Theeffectof a decaying freestream turbulence intensity will be discussed later.

Test calculations to determine the values of A and B for the K. Y. Chien two-equa-

tion turbulence model with the Schmidt PTM transition model were conducted for

freestream turbulence levels of 1.0% to 8.0%. For the test calculations, the start

and end of transition is taken to be the minimum and maximum points of the calcu-

lated Cf distribution.

The results of the calibration tests for calculating the A and B empirical

constants of Schmidt's transition model are shown in Figures 4.6 and 4.7. In these

Figures, the A and B constants have been nondimensionalized with respect to the

initial freestream conditions as follows

and

A _tc

0e u 2

B-

(4.3)

(4.4)

Curve fits between the discrete numerical calibration tests allowed the

values of A and B to be determined for any ffeestream turbulence level between

1.0% and 8.0%. The curve fits described the variation of A and B as follows,

for 0.01 <@<0.08 A =

and

20.687- 2605.0"¢_ + (8.0223" I04)*_ 2

-(1.0488* 106)*_ 3 + (4.9551" 106)*_ 4
(4.5)
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for 0.01 <0 < 0.08 8 - -3.1533 + 277.72*¢ + 1066.2"_ 2

- {2.6284" 10'*)*¢_3
(4.6)

where O = Tue, A = A* 106, and B = B* 1012.

Figures 4.8 and 4.9 show how the transition predictions of the K. Y. Chien

two-equation turbulence model, coupled with Schmidt's PTM transition model,

match the start and end transition momentum Reynolds numbers for the correlations

of Abu-Ghannam and Shaw. These figures show that with Schmidt's PTM transi-

tion model, the numerical start and end of transition can be modified to match the

correlations of Abu-Ghannam and Shaw.

All of the numerical transition tests so far have not allowed a decay in the

freestream turbulence intensity so that the A and B empirical parameters could be

evaluated for a constant freestream turbulence intensity. To eliminate a decay in

freestream turbulence intensity, _ was set to a small value. However in reality, the

freestream dissipation rate can be quite large, especially for high freestream turbu-

lence intensities, which in turn causes a decay in Tue. To model the decay of Tue

and its affects on transition, the calculation for the empirical parameters of the PTM

transition model, A and B, are simply based on the local freestream conditions.

Equation (3.25) may be rearranged to obtain an expression for the freestream turbu-

lence intensity as a function of the freestream TKE and freestream velocity as

follows

Tue = _ (4.7)
/1--.5 Ue

Using equation (4.7) the local freestream turbulence intensity is easily calculated

and used with equations (4.5) and (4.6) to obtain new A and B values for the

transition model based on the local conditions. Schmidt suggests the A and B pa
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rameters be updated every 10 to 20 integration steps for flows with high freestream

turbulence intensities. The simplicity of Schmidt's transition model is readily ap-

parent when flow acceleration or deceleration is added to the simulation process.

The acceleration or deceleration of a boundary layer is produced by a change in the

freestream velocity. Equation (4.7) takes a changing freestream velocity into ac-

count when calculating the freestream turbulence intensity; therefore, the empirical

parameters, A and B, are easily calculated for an accelerating or decelerating

boundary layer.

Figure 4.10 is a plot of the Cf distribution versus momentum Reynolds

number for the same test conditions as for Figure 4.3 except that the PTM transition

model has been used to simulate the start and end of transition according to the

Abu-Ghannam and Shaw correlations. From Figure 4.10 it is noted that at Tue =

2.0% the end of transition has been moved far downstream and as a result the

length of transition has increased considerably. A discussion of this problem will

be detailed in Section 4.3.

4.2.3 Comparison of the K. Y. Chien Turbulence Model with

Schmidt's PTM Transition Model to Experimental Data

The direct comparison of numerical transition simulations has not been con-

ducted up to this point; instead the experimental correlations of Abu-Ghannam and

Shaw have been used to calibrate Schmidt's PTM transition model for the K. Y.

Chien turbulence model in TEXSTAN. At this point the PTM transition model will

be used to simulate the experimental flat plate transition studies available in the open

literature. All of the experiments considered are for transition occurring under the

influence of freestream turbulence.

The first comparison of Schmidt's PTM transition model is made for the

experimental data of Blair and Werle [ 1980]. The details of the flow parameters
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used for this comparison are provided in Appendix D. This set of numerical simu-

lations are for flat plate zero pressure gradient flow. Blair and Werle measured the

effects of transition in terms of heat transfer;, therefore, the numerical comparisons

with the experimental data will use the Stanton number, St. Three test cases, with

freestream turbulence levels of 1.3%, 2.6%, and 6.2%, will be used to examine

transition.

Figures 4.11 to 4.13 are plots of the Stanton number distribution versus x-

Reynolds number for the grid 1 (Tue, i = 1.3%), grid 2 (Tue,i = 2.6%), and grid 3

(Tue,i = 6.2%) flow conditions of Blair and Werle. In these figures, the "natural

transition" and PTM modified transition are compared to the experimental transition

data of Blair and Werle. In Figures 4.11 to 4.13 it is noted that the "natural transi-

tion" plots for the Stanton number do not show any form of transition similar to

local friction coefficient plots. This apparent lack of transition is due to the fact that

for all three Blair cases K. Y. Chien "natural transition" occurred on the unheated

starting length of the plate; therefore, the step change in wall heat flux at the end of

the unheated starting length masked any remnants of the transition process. In

Figures 4.11 and 4.12, the PTM modified transition does not compare well to the

experimental data in the transition region for the grid 1 and grid 2 flow conditions.

In fact, the PTM model does not even reproduce the fully turbulent results.

In examining Schmidt's [1987] results for the grid 1, grid 2, and grid 3

cases of Blair and Werle [ 1980], it was shown that Schmidt could reproduce the

experimental data quite accurately for grid 1 and fairly accurately for the other two

grids. What was consistent with all of Schmidt's results was his ability to repro-

duce fully turbulent results at the end of transition. The results shown in Figures

4.11 to 4.13 are the first evidence that the K. Y. Chien two-equation turbulence

model is not appropriate for transition studies. It was at this point that further com-

parison of Schmidt's PTM transition model in TEXSTAN with experimental data

would be useless because of the apparent fundamental problem with using the K.

Y. Chien two-equation turbulence model for transition studies. This low-Reynolds
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number problem associated with the K. Y. Chien two-equation model also pre-

vented a direct comparison of the transition prediction capabilities of Schmidt's

PTM transition model and The University of Texas transition model. At this point

the objective of this research turned to the identification of the source of the low-

Reynolds number problem associated with the K. Y. Chien turbulence model.

4.3 Problems Associated with the K. Y. Chien Turbulence Model

for Transition Studies

From Figures 4.11 and 4.12 it was noted that the modified transition results

do not reproduce the experimental Stanton number distribution as well as expected.

The numerical predictions appear to "damp" the development of a fully turbulent

boundary layer. This behavior is also seen in Figure 4.10 for Tue = 2.0% which

shows that the fully turbulent response is "damped", instead of predicting a fully

turbulent boundary layer at the end of transition. The delay in the fully turbulent

response with the use of Schmidt's PTM transition model is attributed to the

"natural transition" behavior of the K. Y. Chien two-equation turbulence model. In

Figure 4.3, the Cf distribution for "natural transition" with Tue > 1.0% appears to

be "damped" instead of having a sharp increase as for Tue < 1.0%. This

"damping" effect hinders the ability to define a specific start and end of transition

which is very important in developing the model constants for Schmidt's PTM

transition model. Therefore, the "damping" of the transition response shown in

Figure 4.10, using Schmidt's PTM transition model, can be directly related to the

"damping" affect of the "natural transition" behavior for the K. Y. Chien two-

equation turbulence model, shown in Figure 4.3.

To determine why the K. Y. Chien two-equation turbulence model yields a

different "natural transition" behavior than traditional two-equation turbulence

models, a comparison between the "natural transition" results of the K. Y. Chien

[1982] and Launder and Sharma [1974] was conducted. The Launder and Sharma
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[ 1974] two-equation turbulence model is similar to the Jones and Launder [1972

and 1973] two-equation turbulence model except for different empirical constants,

damping functions, and low-Reynolds number terms as given in equations (2.45)

to (2.54). The following conditions were used to compare the "natural transition"

Cf distribution for the K. Y. Chien and Launder and Sharma two-equation turbu-

lence models (see Appendix D for details),

• Flat plate flow to eliminate curvature effects

• dP/dx = 0 by using a constant freestream velocity

• The starting location determined from equation (3.27)

• Freestream turbulence intensity, Tue, was equal to 2.0%

• The e-profile structural coefficient, al, was maintained at 1.0

• The freestream dissipation rate is set to 0.01 to maintain a constant

freestream turbulence intensity.

Figure 4.14 is a plot of the Cf distribution versus momentum Reynolds

number for the K. Y. Chien and Launder and Sharma two-equation turbulence

models. From Figure 4.14, two distinct differences in the transition predictions are

evident. First, the K. Y. Chien transition model predicts an earlier start of transi-

tion (Rem.s =135) than for the Launder and Sharma transition model (Rem.s =

239). Second, the start and end of transition for the K. Y. Chien model are not as

clearly defined as for the Launder and Sharma model due to the "damping" affect in

the K. Y. Chien results. The purpose of the compaT!son of the K. Y. Chien model

to the Launder and Sharma model is to answer the tollowing two questions,

1. Why does the K. Y. Chien two-equation turbulence model predict an

earlier start of "natural transition" than the Launder and Sharma

turbulence model?

2. Why does the Cf distribution for the K. Y. Chien two-equation turbu-

lence model in the transition region appear to be damped instead of

having a sharp increase?



115

O
v,-

r I t lI_,, I l ' | I l l I f I[ | l ! I ! f I'!

A: Chien [1982]
B: Launder/Sharma [1974]

t3

O

O

101

\
\

\

A

Cr = 0.455

\ / (ln(3"S26*ReL25):

Figure 4.14.

0.4409,._.,,-, •
Rem

I l i I J 1 11]

\

- \
%

I J. I I I ! I II I I I 1 I Jill

10 2 10 3 10 4
Re,.

Local friction coefficient distribution vea'sus momentum Reynolds
number for a "natural transition" comparison of the K. Y. Chien
turbulence model [1982] and the Launder and Sharma turbulence
model [1974] for Tue = 2.0%.



116

To answer the two questions posed above, the differences between the K.

Y. Chien turbulence model and the Launder and Sharma turbulence model must be

examined. The empirical constants, damping functions, and low-Reynolds number

terms for the K. Y. Chien and the Launder and Sharma turbulence models are given

in equations (2.35) to (2.44) and (2.45) to (2.54) respectively. In examining the

various terms of the two turbulence models the major differences between the two

models appear in the f_t and t"2 damping functions, as well as the D and E low-

Reynolds number terms.

To determine if the low-Reynolds number terms, D and E, are the cause of

the differences between the K. Y. Chien turbulence model and the Launder and

Sharma turbulence model, the source terms for equations (2.19) and (2.20) were

combined as follows

and

SE

tOU )2 ,,Sk = 1_ -_y -(p_:+D)

= Clfl _y - pC2f2 +

(4.8)

(4.9)

Using equations (4.8) and (4.9), equations (2.19) and (2.20) are written as follows

and

+ = , +

ay ]

+ S k

+ S¢

(4.10)

(4.]])
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Equations (4.10) and (4.11) are not the exact form of the governing equations

solved by TEXSTAN, instead, Sk and S_ are used for plotting purposes to compare

the K. Y. Chien turbulence model source terms to the Launder and Sharma source

terms.

In comparing the K. Y. Chien and Launder and Sharma turbulence models,

profiles of turbulence quantities are examined at various momentum Reynolds

numbers, relating to Figure 4.14. In the following comparisons, it is useful to

understand the status of the boundary layers for each of the turbulence models at

specified momentum Reynolds numbers. Table 4.1 shows the boundary layer

status for each turbulence model at specified momentum Reynolds numbers. The

various momentum Reynolds numbers described in Table 4.1 and used in the fol-

lowing comparisons were selected to emphasize the distribution of the various

boundary layer characteristics at the three stages of a boundary layer development,

the laminar stage, transitional stage, and the fully turbulent stage. For Rein equal to

30 and 60, both the K. Y. Chien and Launder and Sharma turbulence models calcu-

late a laminar boundary layer. Therefore these two momentum Reynolds numbers

demonstrate the developing laminar boundary layer under the influence of the two

turbulence models. For Rein equal to 135 to 359, both the K. Y. Chien and

Launder and Sharma turbulence models are within various stages of transition.

Therefore these momentum Reynolds numbers demonstrate a transitional boundary

layer under the influence of the two turbulence models. For Rem equal to 1000 and

3000, both the K. Y. Chien and Launder and Shanna turbulence models predict a

fully turbulent boundary layer. Therefore, these two momentum Reynolds num-

bers serve to demonstrate the developing fully turbulent boundary layer under the

influence of the two turbulence models.
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Table 4.1. Boundary Layer Characteristics for Figure 4.14 as a Function of

Momentum Reynolds Number and Type of Two-Equation

Turbulence Model.

Rein

30.0

60.0

135.5

239.0

300.0

359.0

1000.0

3000.0

Boundar), Layer Characteristics

K. Y. Chien Launder and Sharma

I.,amlnar

Laminar

Start of transition

In transition

End of transition

Turbulent

Turbulent

Turbulent

Laminar

Laminar

Laminar

Start of transition

In transition

End of transition

Turbulent

Turbulent

In the profiles that follow, all of the "+ scaling" is in terms of the local shear

velocity (ux) and kinematic viscosity. Definitions of the "+ scale" terms as well as

the other profile variables are provided in the nomenclature.

Figures 4.15 to 4.18 are profiles of Sk ÷ versus y÷ at the momentum

Reynolds numbers specified in Table 4.1. Figure 4.15 shows that Sk + develops

more rapidly for the K. Y. Chien model than for the Launder and Sharma model in

the laminar region (Rein = 30 and 60). Figure 4.16 shows the rapid rise in Sk ÷

associated with the start of transition for both turbulence models, however, the rise

in Sk + for the K. Y. Chien model occurs at Rein = 135 where as for the Launder

and Sharma model the rise in Sk + occurs at Rein = 239. At the start of transition for

the K. Y. Chien turbulence model the peak region is at approximately y+ = 18,

while the peak region is at a y÷ = 24 for the Launder and Sharma model. For fully

turbulent flow, as shown in Figure 4.18, the Sk ÷ distribution for y÷ > 8 are approx-

imately the same for both turbulence models, but the peak region has moved closer

to the wall (y÷ = 12) for both models due to diffusion. In Figures 4.16 to 4.18, the
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K. Y. Chien model predicts an ever increasing negative Sk + in the very near-wall

region. The source of this increasing negative Sk + is due to the low-Reynolds

number term (D) in equation (4.8), which as shown in equation (2.43) contains a

1/y 2 term which becomes large as y --_ 0.

Figures 4.19 to 4.22 are prof'tles of Se+ versus y+ at the momentum

Reynolds numbers specified in Table 4.1. As with the Sk + profiles, Figure 4.19

shows that Sc + develops more rapidly for the K. Y. Chien model than for the

Launder and Sharrna model in the laminar region (Rein -" 30 and 60). As shown in

Figure 4.16, the start of transition for the K. Y. Chien and Launder and Sharma

turbulence models are also reflected in Figure 4.20 with a rapid rise in Se+. Figure

4.22 shows that for a fully turbulent boundary layer, the peak region of the SC

profile is larger and further from the wall for the Launder and Sharma turbulence

model than for the K. Y. Chien turbulence model. This peak region for the

Launder and Sharma model is at approximately y+ -- 10, while for the K. Y. Chien

model the peak region is at y+ -- 8. The source term development, shown in

Figures 4.15 to 4.22, is reflected in the development of the k + and e + profiles.

Figures 4.23 to 4.26 are the k + profiles at the momentum Reynolds num-

bers specified in Table 4.1. Figure 4.23 shows a comparison of the degree to

which the k + profile has developed in the laminar region for the K. Y. Chien turbu-

lence model as compared to the Launder and Sharma turbulence model. The in-

creased k + profile for the K. Y. Chien turbulence model leads to an earlier start of

transition than for the Launder and Sharma model. Figure 4.24 shows the rapid

growth of the k + profile for the K. Y. Chien model once transition has started,

while for a fully turbulent boundary layer (Figure 4.26) the k + profiles are relatively

constant. The cause of the increased development in the k ÷ profile is explained by

examining the turbulent viscosity distribution for both turbulence models.

Figures 4.27 to 4.30 are the e + profiles at the momentum Reynolds num-

bers specified in Table 4.1. As expected, with an increased k + distribution in the
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laminarregion,thee+ distribution for the K. Y. Chien turbulence model is more

developed than for the Launder and Sharma turbulence model as shown in Figure

4.27. For a fully turbulent boundary layer, shown in Figure 4.30, the e + profile is

larger for the Launder and Sharma model than for the K. Y. Chien model, while in

Figure 4.26, the k + profile for the K. Y. Chien model is larger than the k ÷ profile

for the Launder and Sharma model.

Figures 4.31 to 4.34 are profiles of vJv versus y+ at the momentum

Reynolds numbers specified in Table 4.1. From Figure 4.31 it is noted that for 7 <

y+ _<20 the following is true

V.__t > V..3.t

Vc Vt,s (4.12)

where C and LS correspond to K. Y. Chien and Launder and Sharma respectively.

With vt for the K. Y. Chien model greater than vt for Launder and Sharma model,

the near-wall production of TKE for the K. Y. Chien model will be greater than for

the Launder and Sharma model. However, by the time the boundary layer becomes

fully turbulent, the vt/v distribution for both the K. Y. Chien and Launder and

Sharma turbulence models become the same, as shown in Figure 4.34. From

equation (2.17) the turbulent viscosity may be written as

vt = Claf_k-_2 . (4.13)
13

Using the definition of the turbulent Reynolds number, Ret = k2/_'v, equation

(4.13) may be rewritten as follows

v.__t= ClaflsRe t (4.14)
V

By examining equation (4.14), the characteristics of viA' are defined by examining

the characteristics of f_ and Ret.
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Figures 4.35 to 4.38 are profiles of Ret versus y+ for the momentum

Reynolds numbers defined in Table 4.1. As shown in Figures 4.35 to 4.38, the

turbulent Reynolds number for both the K. Y. Chien and Launder and Sharma tur-

bulence models are not exactly the same but they reflect similar behavior. The tur-

bulent Reynolds number is a ratio of the boundary layer TKE and TDR, therefore it

is merely a reflection of the distribution of TKE and TDR governed by the solution

of equations (2.19) and (2.20). It should be expected that the turbulent Reynolds

number for both the K. Y. Chien and Launder and Sharma be approximately the

same and not pose a direct influence on the calculation of vt/v.

On the other hand, the fvt function has a direct effect on the calculation of the

turbulent viscosity. Figures 4.39 to 4.42 are profiles of f_t versus y+ for the mo-

mentum Reynolds numbers defined in Table 4.1. As shown in Figures 4.39 and

4.40, the following is noted,

fp.,C > fl.t, LS for 3 < y* < 25 and 0 < Rein < 300. (4.15)

Equation (4.15) is the reason why the start of transition for the K. Y. Chien turbu-

lence model is less than the start of transition for the Launder and Sharma turbu-

lence model. For the K. Y. Chien two-equation model, a larger f_ damping func-

tion in the near-wall region means vt will be larger in the near-wall region, which

ultimately translates into an increase in the production of TKE in the near-wall

region and an earlier start of transition (the first question posed earlier in this

section).

To answer the second question posed in this section pertaining to the

"damped" Cf distribution associated with the K. Y. Chien turbulence model, the

form of the fv- expression must be examined. The f_t proposed by K. Y. Chien is

only a function of y, as shown in equation (2.40). This means that the f_t function

has only one shape and varies only in the y-direction as the boundary layer grows,



142

5O

4O

3O

Ret

2O

10

0

- A:

- B:

- C:

. D:

L.

L---

f-
I
1"
I

l

E
!

F
1-
I

l I I I I !1 I I I" I I ! I II[

Cltien [ 1982] Rein = 30

Launder/Sharma [1974] Rein = 30

Chien [1982] Rein = 60

Launder/Sharma [1974] Rein = 60

CJ

t I t Ill

I m

m

g

!l
I
I
I
"_-'D

-II
]l

/I

i B :j, !
10 -I 100 _ 101 102

Figure 4.35. Turbulent Reynolds number profiles at Rera = 30 and 60 for the K.
Y. Often [1982] and the Launder and Shan'na [1974] turbulence
models.



143

400.

Ret 300.

200.

100.

6oo. I

L A:

C:
r- D:

500. 1---

O. i ,

10-1

Figure 4.36.

t , x"-rl,, l i' , , i ,,,,1 '

Chien [1982] Rein= 135

Launder/Sharrna [1974] Rein = 135

Chien [1982] Rein =239

Launder/Sharrna [1974] Rein = 239

l | I l f f fl

10 o

m

I
i-
I-
i--
I--,
I-
I-

l:
I

y, 101 10 _

Turbulent Reynolds number profiles at Rern " 135 and 239 for the
K. Y. Chien [1982] and the Launder and Sharma [1974] turbulence
models.



144

Rct

3OO

250

200

150

IO0

5O

, , I ,,_vj , , , , ,,,,| •

Chien [1982] Re,,,--- 300

Launder/Sharma [1974] Rein = 300

Chien [1982] Re. =359

Launder/Sharma [1974] Rein = 359

I I l I I

J

/
/

Figure 4.37.

10 0 10 1 10 2
y+

Turbulent Reynolds number profiles at Rein - 300 and 359 for the
K. Y. Chien [1982] and the Launder and Sharma [1974] turbulence
models.



145

6O0

5OO

4OO

Ret 300

2OO

100

Figure 4.38.

Chien [1982] Rein = 1000

Launder/Sharma [1974] Rein = 1000

Chien [1982] Rein : 3000

Launder/Sharma [ 1974] Rein : 3000

C

I 1 ] i I I'_

#
/-

f--
/-
/-

/
/

/
/

/
/

/
/

10 0 10 1 10 2
y+

Turbulent Reynolds n_ lm'ofiles at Rein = 1000 and 3000 for
the K. Y. Chien [1982] and the Launder and Sharma [1974]
turbulence naodels.



146

1.2

1.0

0.8

0.6

0,4

0.2

0.0

D

m

i

B

D

m

m

m

m

m

!

D

!

A:

B:
C:
D:

Figure 4.39.

it' "; i li!,[ l 1 ! w sill ! ! i I l!,_

Chien [1982] Rein = 30

Launder/Sharma [1974] Rein = 30

Chien [1982] Rein = 60

Launder/Sharma [1974] Rem = 60

m

m

m

/ -
/ -

/ --
/ -

13x I

A,C _ i D

10 0 101 10 2
y*

Turbtdent viuxmty damping _ prc£des at Rein = 30 and 60
for the K. Y. Chien [1982] and the Launder and Sharma [1974]
turbulence models.



147

1.2

1.0 --

0.8 m

f,o,6 -

0.4

0.2 --

0.0

10 -1

Figu_ 4.40.

i i ) w I I,,j , ! I I Illw| i I I 1 i Ill

A: Chien [1982] Rein = 135

B: Launder/Sharma [1974] Rein = 135

C: Chien [1982] Rein "- 239

D: Launder/Sharma [1974] Rein = 239 FT"S_
I-
I -
I -
I--
I -
I -

I/__

I:

i | " " -" :-., 1 I I I I I II I 1 [ I I I I I

10 0 10 2

_nt viscosity damping f_mctio_ profiles at Rcm = 135 and 239
for the K. Y. Chien [1982] and the Launder and Sharma [1974]
turbulence models.



148

1 2

1 0

0 8

0 6

0 4

' !

- A:

- B:

_ C:

D:

m

p

Chien [1982] Rein = 300

Launder/Sharma [ 1974]

Chien [1982] Rera = 359

Launder/Sharma [ 1974]

! I |II I

Rein = 300

Rein = 359

i ! I I I !

I

p m

/
/

0
/

/

0 0
10 -1

Figure 4.4 I.

10 0 y+ 101 10 2

Turbulent viscosity damping function profiles at Re_ ,, 300 and 359
for the K. Y. Chien [1982] and the Launder and Sharma [1974]
turbulence models.



149

1.2

1.0

0.8

f_ 0.6

0.4

0.2

A: Chien [1982] Rein= 1000
B: Launder/Sharma [1974] Rem = 1000
C: Chien [1982] Rein= 3000
D: Launder/Sharma [1974] Rein -" 3000

0.0
1 0 -1

Figure 4.42.

10 0 10 _ 10 2

Turbulentviscositydamping functionprofilesatRein= I000 and
3000 fortheK. Y. Chien [1982]and theLaunder and Sharma
[1974]mrl:salencemodels.



150

as shown in Figures 4.39 to 4.42. The f_t function used by K. Y. Chien was un-

doubtedly formulated for a fully turbulent boundary layer and does not change

whether the flow is laminar or in transition. Therefore, in a laminar boundary

layer, the K. Y. Chien turbulence model predicts an fla distribution throughout the

entire layer. On the other hand, the fa for the Launder and Sharma model is a func-

tion of the turbulent Reynolds number and does reflect whether the flow is laminar,

transitional, or fully turbulent depending on the ratio of TKE to TDR. In Figure

4.39, there is an fu distribution for the K. Y. Chien model throughout the boundary

layer, but for the Launder and Sharma model the fu distribution is constant except

for at the freestream location. In Figure 4.40, the diffusion of TKE and TDR from

the freestream causes the fu distribution to change further into the boundary layer.

Figure 4.42, when compared to Figure 4.39, shows how much the f_t distribution

has changed for the Launder and Sharma mode1, reflecting a change in the bound-

ary layer; whereas, the fo. distribution for the K. Y. Chien model has remained the

same.

The "damped" effect in the Cf distribution for the K. Y. Chien model is

therefore due to the fact that the f_t function is set for a fully turbulent boundary

layer and, at the start of the calculations, the resulting f_t distribution within in the

laminar boundary layer is not correct. In fact, the f_ distribution for the K. Y.

Chien model is not correct until the boundary layer has progressed to a high

Reynolds number where the f_t distribution only occupies the log and viscous

regions of the turbulent boundary layer instead of the entire boundary layer when

the flow is laminar.

The problem associated with the f, function for transitional flows does not

mean the K. Y. Chien two-equation turbulence model should not be used for turbu-

lence modeling. On the contrary, for internal flows at high Reynolds numbers the

numerical Cr distribution matches experimental data as shown by Pietrzyk [ 1985]

and Chen [1989]. For external flows, Patel et al. [ 1985] demonstrated that the K.

Y. Chien turbulence model produces reasonable results for fully turbulent flat plate
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boundarylayerflow. Thelimitationsof theK. Y. Chienmodelappearto bein the
laminarandtransitionregion.

In anattemptto compareSchmidt'stransitionmodelandTheUniversityof

Texastransitionmodel(theoriginalobjectiveof this thesis),theuseof two other

numericalturbulencemodelswasinvestigated.Thetwo-equationturbulencemod-

elsof LamandBremhorst[1981]andLaunderandSharma[1974]wereexamined

in thisstudytoattemptto makeacomparisonof thepredictioncapabilitiesof the

two proposedtransitionmodels.However,in eachcasenumericalinstabilitiesin

TEXSTAN associatedwith eachof theturbulencemodelsexaminedhamperedall

progress.

In thecaseof theLamandBremhorstturbulencemodelin TEXSTAN, afully

turbulentboundarylayerwouldrevertbackto a laminarboundarylayerin azero

pressuregradientflow field. Theinstabilityby whichtheturbulentboundarylayer

revertsbackto a laminarboundarylayeralwaysbeginsnearthesolidwall bound-

ary andpropagatesout to thefreestream.Theexactcauseof thenumericalinstabil-
ity associatedwith theLamandBremhorstturbulencemodelwasnotdetermined,

but it isbelievedto betied into theasymptoticbehaviorof theturbulencequantities

in theregionof thesolidwall boundaryandhowTEXSTAN calculatesthesevalues
in thewall half controlvolumeof thefinitedifferenceequations.

In thecaseof theLaunderandSharmamodelinTEXSTAN, for freestream

turbulencelevelslessthan2.0%,theboundarylayerwouldnevercompletelytran-

sitioninto afully turbulentboundarylayer. Insteadtheboundarylayermidway

throughtransitionwouldrevertbackto a laminarboundarylayer. Forfreestream
turbulencelevelsgreaterthan2.0%,theCf distributionwouldoscillateat highmo-

mentumReynoldsnumbersassociatedwith afully turbulentboundarylayer. The

low freestreamturbulencelevelproblemassociatedwith theLaunderandSharma

turbulencemodelwasdiscoveredandcorrectedby Schmidt[1987]in hisnumerical

boundarylayercode. However,whenthecorrectionssuggestedby Schmidt,for
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theLaunderandSharmaturbulencemodel,wereimplementedintoTEXSTAN,

theyhadnoeffecton thetransitionfor low freestreamturbulencelevels(Tue<

1.0%).



Chapter 5

Summary and Recommendations

5.0 Summary

The original goal of this research was to compare the transition prediction

capabilities of the two transition models, developed at the University of Minnesota

and The University of Texas at Austin, coupled with the K. Y. Chien two-equation

turbulence model. However, the results of this research has lead to the identifica-

tion of a major shortcoming in the use of the basic K. Y. Chien turbulence model

for low-Reynolds number flows.

Accurate specification of initial dependent variable profiles (such as velocity,

stagnation enthalpy, TKE, and TDR) are required in order to obtain satisfactory

heat transfer predictions in the stagnation region of a turbine blade. Boundary layer

solutions can be desensitized to errors in the initial conditions by starting the

boundary layer solution far upstream of the region of interest. However, for tur-

bine blade calculations, the entire airfoil surface makes up the computational do-

main and requires accurate initial profiles specified at the onset of the calculations.

A method for specifying initial TKE and TDR profiles that are compatible with the

finite-difference equations defining the K. Y. Chien two-equation turbulence model

are detailed in Chapter 3.

Accurate specification of boundary conditions for the computational domain

are required in order to obtain accurate results in the governing equations at each

integration step. This study detailed a method used to define an accurate and

smooth freestream velocity distribution which results in a smooth pressure gradient

distribution for the momentum equation. The specification of the freestream turbu-
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lence level at a minimum of two locations was required in order to predict an accu-

rate decay of freestream TKE and TDR, which in turn affects the transitional behav-

ior of any two-equation turbulence model. A method for calculating the initial

freestream TKE and TDR levels given the freestream turbulence level at one, two,

or more locations is detailed in Chapter 3. A problem associated with calculating a

decreasing freestream length scale distribution for the K. Y. Chien turbulence

model was identified and steps to correct the problem are discussed.

Ultimately, a problem associated with using the K. Y. Chien two-equation

turbulence model for transition studies was identified. The problem with the K. Y.

Chien two-equation model involved premature start of "natural transition" and a

"damped" response as the simulation moved to fully turbulent flow at the end of

transition. This is in contrast to other two-equation turbulence models at compara-

ble freestream turbulence conditions. The "damping" of the transition response of

the K. Y. Chien turbulence model lead to an inaccurate estimate of the start and end

of transition for freestream turbulence levels greater than 1.0%. An inaccurate de-

termination of the start and end of transition leads to difficulty in calculating proper

model constants for either of the proposed transition models (equations 2.55 or

2.59). The cause of both problems associated with the K. Y. Chien turbulence

model is linked to the form of the f_ function defined by K. Y. Chien [ 1982].

Specifying the f_ function as only a function of y+ leads to an increased production

of TKE in the near-wall region of a laminar boundary layer, which in turn leads to

an early start to transition. The resulting fl_distribution also leads to a "damping"

of the fully turbulent response of the K. Y. Chien turbulence model. The form of

the f_t function specified by K. Y. Chien is for a fully turbulent boundary layer.

Therefore, in a laminar and transition region of a developing boundary layer, the

distribution of f_ is not correct and will not be correct until the boundary layer

be.comas fully turbulent with the y+ effect buffed in the sublayer and log regions of

theboundary layer.
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5.1 Recommendations for Future Work

In this study, it is shown that the K. Y. Chien two-equation turbulence model

should not be used for transition studies because of the formation of the fg func-

tion. As shown by Schmidt [1987], other two-equation turbulence models may be

used to obtain accurate transition simulations. For future work in comparing the

transition predictions of the two proposed transition models (equations 2.55 and

2.59), it is suggested that a two-equation turbulence model similar to the model

proposed by Jones and Launder [1972 and 1973] be used which employes an fg

function that is not based on y+.

As for the TEXSTAN boundary layer code, the finite difference equations

should be examined to determine if the numerical instabilities associated with the

Lam and Brernhorst [1981] and Launder and Sharma [1974] two-equation turbu-

lence models are due to finite difference expressions. Particular emphasis should

be placed on the half control volume formulations for both at the wall and

freestream locations.

Future work on the study of transition should go beyond the comparison of

the two proposed transition models. The ability to numerically predict transition at

higher freestream turbulence levels (greater than 10.0%) should be investigated.

Included in the study of high freestream turbulence intensities should be an exami-

nation of numerically predicting transition under the influence of various pressure

gradients. The comparisons of developing dependent variable profiles has been

extremely beneficial in this study and would benefit future numerical studies.

Future studies should also examine the energy budget for any proposed turbulence

model to avoid any numerical irregularities in the boundary layer calculations. For

all numerical studies the comparison of numerical simulations to available experi-

mental data is essential in order to draw the correct conclusions from the numerical

results.



Appendix A

Derivation of Model Equations for Turbulent Kinetic Energy

and Turbulent Dissipation Rate

This appendix is an outline of the derivation for the model form of the

turbulent kinetic energy (TKE) and turbulent dissipation rate (TDR) equations, as

shown in Chapter 2 as equations (2.19) and (2.20). The equations are derived in

tensor notation, then converted to standard Cartesian coordinates.

A.1 Turbulent Kinetic Energy Equation

The standard method to derive the TKE equation is to subtract the mean

momentum equation from the instantaneous momentum equation and multiply the

results by u'i, then time-average. Using Reynolds decomposition, the instantaneous

and mean momentum equations, neglecting body forces, are

and

where Oki is the stress tensor for the instantaneous velocity, (rki is the stress tensor

for the mean velocity, and i_ is the partial derivative operator, _9/3k. The instanta-

neous stress tensor is defined as follows

CIki = _ki + IJki (A.3)

where o'ki is the stress tensor for the fluctuating velocity. The definition of the

mean and fluctuating stress tensors are
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and

Oki = -P8ki+ 'l;ki (A.4)

O'k = -ps + (A.5)

)

where 'tk_ is the mean shear stress tensor, 'l;ki is the fluctuating shear stress tensor,

and ¢_ki is the Kronecker delta. The mean and fluctuating shear stress tensors are

defined as follows in terms of the mean and fluctuating velocity gradients

and

= 2d_1 - 10Uk 0Uil]
Xki "[2 (O_xi + _-kxktJ

'-[2 _Oxi OXk ]J"

(A.6)

(A.7)

The fluctuating momentum equation is calculated by subtracting the mean

momentum equation (A.2) from the instantaneous momentum equation (A. 1),

which yields

0k I 13( WkU'i + U'kU i + U'kU'i ) ] = Ok( O"ki }-- Ok(-19U'kU-----_ ). (A.8)

Multiplying equation (A.8) by u i, time-averaging the resulting equation, and rear-

ranging terms yields the TKE equation

Ok( pUkk ) = -PU'kU'i0k(Ui ) - 01 pu=-_+ pu_ p_-}-_I-"ki0k(U'i), (A.9)

where k is the turbulent kinetic energy defined as 0.5u'iu' i and repeated indicies im-

ply summation over i (or k) = 1, 2, and 3.

Equation (A.9) is the TKE equation with true dissipation. A majority of the two-

equation turbulence models are written in terms of isotropic dissipation. By corn-
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bining thelast two terms on the right-hand side of equation (A.9), the isotropic

form of the TKE equation may be written as

Ok(pUkk) =-pu'ku'iBk( Ui ) - i}f pu-_k+-_)- px3kk] -

I II HI IV

(A.10)

V

where I is the convection of TKE by the mean flow, II is the production of TKE by

the mean flow, III is the transport of TKE by turbulence and transport of flow work

by turbulence, IV is the transport of work due to viscous stresses, and V is the dis-

sipation of TKE by viscous stresses. In equation (A. 10), _: is the isotropic dissipa-

tion defined as t.t_kU'i/)kU'i.

The transport terms diffuse or redistribute the given quantity within the boundary
-"7-;.

layer. Invoking the boundary layer assumptions and recognizing the fact that u v _s

the dominant Reynolds stress in a two-dimensional boundary layer, equation

(A. 10) may be written in the following cartesian notation.

PU_xx + pV_y-y = -pu v _--y- - p k + _j

I II III IV V

(A.II)

Various terms of equation (A. 11) must be modeled in order to numerically

obtain a solution. The following is a list of the model forms of the different terms

of the TKE equation.

Term I: Represents the convection of TKE. No modeling is required for
this term; therefore,

bk bk

I = pU_-x-+ pV_-_. (A.12)

Term II: Represents the production of TKE. Using the mean field clo-
sure approximation, equation (2.15), this term becomes
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TermHI:

II = -puv 0y l.tt (A.13)

Represents the turbulent transport of TKE. Neglecting the fluc-
tuating pressure and using a form of eddy-diffusivity hypothesis
(Markatos, 1987) this term becomes

_k-k_Y ) " (A.14)

Term IV: Represents the molecular diffusion of TKE. No model is re-
quired for this term; therefore,

o,°'1IV = - -I.t577... (A.15)

Term V: Represents isotropic dissipation. No model is required for this
term; therefore,

", bu' Off

V = -e = -I.t-_yo 0y " (A.16)

Using the model terms, equations (A. 12) to (A. 16), the form of the TKE equation

used for two-equation turbulence modeling (equation 2.19) may be written as

follows

0u_ +pv_ = _ _ + . +_ _- - (p_+D), (A.17)

A

where D is the low-Reynolds number term used to ensure E = 0 at the wall.

A.2 Turbulent Dissipation Rate Equation

The standard approach to deriving the TDR equation is to differentiate the xi

-component of the fluctuating momentum equation with respect to xl and multiply

the results by v01u'i, then time average [Hanjalic and Launder, 1976]. Using the
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chain rule and conservation of mass (OkUk - 0), the fluctuating momentum

equation (A.9) is rewritten as

(A.18)

Differentiating equation (A. 18) by xl yields

al 9UkOk(u'i) + Pu'kak(Ui) + PU'k3k_ u'i) + ak(-pukui) = a_k( a'ki). (A.19)

Multiplying equation (A. 19) by vajui and time-averaging produces

2V[( _lU'i )_1(pUk_)kU'i)+ ( c),U'i )_1{ PU'k_kUi )+ ( _lU'i )_1(PU'kt)kU'i)] +

After expanding each term of equation (A.20), the f'mal form of the TDR equation

may be written as

UkakE = -2V [( alU' i _ alU' k ) + ( akU' ! X aiU'l )]( akUi )" 2v { a,ui l akU'i ){ aiu'k )

I II III

IV V A V B V C VI

where _: is the isotropic dissipation, I is the convection of TDR by the mean flow,

II is the production of TDR by the mean flow, IH is the production of TDR by vor-

tex stretching, IV is the dissipation of TDR by viscous stresses, VA is the transport

of TDR by velocity fluctuations, VB is the transport of TDR by pressure fluctua-

tions, Vc is the transport of TDR by dissipation (self transport), and VI is the pro-

duction of TDR by the mean flow.
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Invoking the boundary layer assumptions and using the fact that u v is the

dominate Reynolds stress, each term of equation (A.21) may be modeled as follows

using cartesian coordinates [Hanjalic' and Launder, 1972].

Term I: Represents the convection of TDR. No modeling is required for
this term; therefore,

I = UkOkE -- U_ _ + V _)_ (A.22)
Oy"OX

Term II: Represents the production of TDR by the mean flow. Using the
mean field closure approximation, equation (2.15), this term
becomes

II = -2v[( c_lu'i _(/)lu' k )+( C_kU'1X o_iu'l)]( c)kUi )= Cl _t -_y (A.23)

Terms lII+ W:

III+W

Represents the production of TDR by vortex stretching and the
dissipation of TDR by viscous stresses. This term is modeled
by Hanjalic and Launder [1972] as

-2[v( OlUI )( t)kU' i )( t)lU' k )+( V_k()IU' i )] = -C2_ "_" (A.24)

Term VA: Represents the turbulent diffusion of TDR by velocity fluctua-
tions. Using a form of eddy-diffusivity hypothesis (Hanjalic
and Launder, 1972) this term becomes

lo_ _yy]" (A.25)

Term VB: Represents the transport of TDR by pressure fluctuations. This

term is neglected; therefore,

VB = -2V01U'k01P' = 0 (A.26)
P

Term Vc: Represents the transport of TDR by dissipation (self transport).
No modeling is required for this term; therefore,

A

VC = V Oke = V _y'-y. (A.27)
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TermVI: Representsproductionof TDR bythemeanflow. This term is

neglected because higher order derivatives of the mean flow are
assumed negligible (Hanjalic and Launder, 1972)

VI = 2vu k ( _)lu'i )( OlOkUi ) = 0. (A.28)

Jones and Launder [ 1972] proposed the use of damping functions to modify

the C-constants in the TDR equation so that numerical calculations may be made

within the buffer and viscous layers close to the wall. Using the model terms,

equations (A.22) and (A.28), with the addition of damping functions, the form of

the TDR equation used for two-equation turbulence modeling (equation 2.20) may

be written as follows

"pub--_-x+ pV_-y Clfl_'lat_oqy ] + t.t+_ _- _---+E), (A.29)

where E is the low-Reynolds number term used to improve the match of the peak

level of TKE with experiment [Jones and Launder, 1972].



Appendix B

Derivation of the Reshotko Equation Describing an Initial
Turbulent Kinetic Energy Profile

This appendix outlines the method used to derive the initial TKE prof'de,

equation (3.26), to simulate the effect freestream turbulence intensity has on the

otherwise Blasius type of profile. To develop the TKE profile equation, assume

the velocity fluctuations in the streamwise direction are the only fluctuations con-

sidered, therefore,

m

k = 0.5u '2. (B.1)

The fluctuating streamwise velocity may be approximated as follows,

u'= dU (B.2)
dUe

Using the Blasius variables, equation (B.2) may be written as,

Conducting the indicated differentiation in equation (B.3) yields

u'= f' + 0.5 rl f". (B.4)

Equation (B.4) defines the fluctuating streamwise velocity component in terms of

the Blasius variables. Examining Equation (B. 1) the TKE profile may be defined

as,
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m

k ,_ Clu '2 . (B.5)

Using equation (B.4) and defining the proportionality constant ,Ct, as the

freestream TKE value, the Reshotko TKE profile equation is defined as follows

where,

k = C_If'+0.5n f'?

Cl - 1.5(Tu Ue)2 = Ice.

(B.6)

(B.7)

The constant of proportionality is defined as Ice in order for the TKE profile to

asymptotically match the freestream TKE boundary condition.



Appendix C

Use of Splines to Obtain Smooth Freestream
Velocity Data

As discussed in Chapter 3, TEXSTAN cannot use raw experimental

freestream velocity data as boundary conditions because small experimental errors

result in large errors in the numerical calculation of gradients. The purpose of this

Appendix is to graphically demonstrate the effect the number of knots used in a

least-squares cubic spline routine has on the calculated freestream velocity distribu-

tion and resulting pressure gradient calculation.

TEXSTAN requires a continuous representation of the freestream velocity

distribution in order to calculate the pressure gradient at each integration step for the

momentum equation. TEXIPBC uses a least-squares cubic spline to calculate a

continuous freestream velocity distribution given a discrete set of input freestream

velocity data values. There is one advantage to using a least-squares cubic spline

over a general cubic spline. Besides giving the user a continuous representation of

the input data, a least-squares cubic spline allows the user the option of smoothing

any irregularities in the data through the selection of a number of knots.

To examine the effect the number of knots have on the calculation of the

freestream pressure gradient, TEXIPBC was used to determine the freestream pres-

sure distribution, freestream velocity distribution, and freestream pressure gradient

distribution as a function of the number of knots used. Appendix D contains the

relevant flow parameters used for calculating the freestream conditions. The

freestream pressure distribution, i.e. input loading, used to calculate the freestream

velocity and pressure gradient distributions was obtained from Daniels and Browne

[1981 ] and corresponds to the turbine blade suction at the design conditions. In the

analysis of turbine blade loading distributions the loading is often related to a loca-
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tion on thebladethroughtheuseof thesurfacedistance,s. Thesurfacedistance,

s, is thedistancemeasuredalongthesurfaceof abladefrom thestagnationpoint,

wheres = 0, to thetrailingedgelocation.Sincethecurvatureof thepressureand

suctionsurfacesof aturbinebladearedifferent,theywill havedifferentsurface
distances.

In thefollowing discussionof thefigures,therolethenumberof knots
usedby theleast-squarescubicis considered.For zeroknots,theleast-squares

cubicsplinedoesnotsmooththeinputdata;therefore,theresultingoutput

freestreamdistributionswill containrandomoscillations.Fora largenumberof

knots(approximatelygreaterthan15)theresultinginputdatawill notbesmoothed
becausetheadvantageof a least-squaresfit to thedatabetweentheknotsvanishes.

As aresult,theoutputfreestreamdistributionswill lookvery similarto thecase

with zeroknots. For asmallnumberof knots(approximatelylessthan12)thein-
putdatawill besmoothedwhichtranslatesinto smoothoutputdistributions.In

summary,thedegreeof smoothingfor outputfreestreamdistributionsis subjectto

theuser'sjudgmentandthenumberof knotsused.Thequestionof whataspects

of theinput loadingdatashouldor notbesmoothedmustbeconsideredbythe
user.

Figure C. 1 is a plot of the freestream pressure distribution as a function of s

for a various numbers of knots. Zero knots corresponds to the original input

freestream pressure distribution, ten and five knots correspond to different degrees

of smoothing used by the least-squares cubic spline. As expected, the smoothest

output pressure distribution is for the five knot case.

Figure C.2 is a plot of the freestream velocity distribution as a function of s

for a various numbers of knots. The freestream velocity distribution is calculated

by TEXIPBC using the input freestream pressure distribution and one-dimensional

compressible flow equations. In this figure the freestream pressure distribution is
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Figure C. 1. Freesla,eam pressure distribution for the suction surface of Daniels'
[1978] turbine blade for the design Reynolds number case.
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Figure C.2. Freesueam velocity distribution for the suction surface of Daniels'
[1978] turbine blade for the design Reynolds number case.
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relatively smooth for the zero knot case, but by using five knots, the "bulge" at s =

0.01 m can be eliminated.

Figure C.3 is a plot of the freestream pressure gradient distribution as a

function of s for a various number of knots. The pressure gradient is calculated

from equation (3.4). What is immediately noticed in Figure C.3 is large oscilla-

tions in the pressure gradient calculations for the cases of zero and ten knots.

These oscillations only emphasize the point that a smooth velocity distribution, like

Figure C.2, does not guarantee a smooth pressure gradient distribution. The nu-

merical calculation of the velocity gradient used in equation (3.4) amplifies any er-

rors in the velocity distribution which results in the the large oscillations shown in

Figure C.3. The five knot case smooths out a majority of the oscillations in the

pressure gradient. Therefore, the freestream velocity distribution calculated from

the five knot case could be used by TEXSTAN to simulate the freestream velocity

boundary conditions for the suction surface of the turbine blade.
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Daniels' [ 1978] turbine blade for the design Reynolds number case.



Appendix D

Details of Numerical Simulations

This appendix outlines the various flow field characteristics used for the

numerical transition simulations. The experimental heat transfer data of Blair and

Werle [1980] for flat plate zero pressure gradient flow is presented as well as the

turbine blade velocity loading for Daniels [1978] used in Appendix C.

For all of the numerical simulations discussed in this section, the working

fluid was air, the fluid properties were considered constant, and the turbulent

Prandtl number was assumed constant and equal to 0.9. Boundary layer

entrainment was based only on the velocity profile and viscous dissipation was

included.

Section 4.1.1 numerical simulation paramctcr_ (zcr0 pressure _adient):

Ue = 30.3m/s Tw = Te = 294.7K

Pe = 1 arm _ = 295 K

Tue = 3.0% ke,i = 1.239 m2/s 2

al = 1.0 e_.i = 0.01 m2/s3

integration stepsize = 0.255

Starting locations:

for Rex,i = 10,000 _ xi = 5.0294"10 .3 m

for Re×.i = 1000 _ xi = 5.0294"10 n m

for Rex,i = 100 _ xi = 5.0294* 10 .5 m

for Rex,i = 10 _ xi = 5.0294* 10 .6 m

for Rex,i = 1 _ xi = 5.0294"10 .7 m
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Section 4.1.2 numerical simulation parameters (zero pressure m'adient):

Ue -- 30.3m/s

Pe = 1 arm

Tue -- 3.0%

Rex,i = 10

T,,, = Tc- 294.7K

= 295i,:
ke.i = 1.239 m2/s 2
A

ee.i = 0.01 m2/s3

integration step size -- 0.25_5

Initial turbulent dissipation rate profiles:

al = 100, 10, 1, 0.1, and 0.01

Section 4.1.3 numerical simulation parameters (zero pressure m'adient):

Ue -- 30.3m/s Tw = Te = 294.7 K

Pe = latin T_e = 295K

al = 1.0 Ee, i = 0.01 m2/s 3

integration step size = 0.258

Starting locations:
for Tue = 0.5%: ke.i = 0.034m2/s 2 and Rex,i = 40,000

forTue = 1.0%: ke,i = 0.138 m2/s 2 and Rex,i = 100

forTue = 2.0%: ke,i = 0.551m2]s 2 and Rex,i = 25

for Tue = 4.0%: ke.i = 2.203m2/s 2 and Rex,i = 6
for Tue = 6.0%: ke.i = 4.958m2/s 2 and Rex.i = 2

forTue = 8.0%: ke,i = 8.814 m2/s2 and Rex,i = 1

$¢¢ti0n 4.2.3 m,_mcric_l ,simulation parameters for the Blair and Werle

[ 19801 zero pressure m'adient cases:

Ue = 30.3m/s T_e = 295K

Pe = 1 atm al = 1.0

q,,, = 0.0W/m 2 0.0 < x < 0.0429m

qw = 850W/m 2 0.0429 < x < 2.4m

T,,.,/Te = 1.03 (approximately) for x > 0.0429 m

integration step size = 0.258
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Blair Grid 1: at x - 3.114"10 .5 m: Tue = 1.27%

ke,i = 0.222 m2/s 2

_e,i -- 4.0 m2/s 3

at x = 7.546"10 .6 m: Tue = 2.58%

kc,i = 0.917 m2/s 2

_e,i = 25.0m2/s 3

Blair Grid 3: at x = 1.004"10 .6 m: Tue = 6.17%

ke,i = 5.243 m2/s 2

_e,i = 200.0 m2/s 3

Table D. 1 contains the experimental fiat plate zero pressure gradient heat

transfer distribution for Blair and Werle [1980]. This data is used in

Figures 4.11 to 4.13.
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TableD.1. ExperimentalHeatTransferDataof Blair andWerle[1980]
for Flat Plate Zero Pressure Gradient Flow

x-Reynolds
Number

1.10603E+05

1.35854E*05

1.61106E+05

1.86358E+05
2.11609E+05

2.36861E+05

2.62113E+05

2.87364E+05

3.12616E+05

3.37868E+05

3.63120E+05

4.13623E+05

4.64126E+05
5.14630E+05

5.65133E+05

6.66140E+05
7.67147E+05

8.68154E+05

9.69161E+05

1.07017E+06

1.17117E+06

1.27218E+06

1.37319E+06

1.47420E+06
1.57520E+06

1.67621E÷06

1.77722E+06

1.87822E+06

1.97923E+06
2.08024E+O6

2.18124E+06

2.33275E+06

2.48426E+06

2.63577E+06

2.78728E+06

2.93879E+06

3.09030E+06

3.24181E+06
3.39332E+06

3.54484E+06

3.69635E+06

3.84786E+06

3.99937E+06
4.15088E+06

4.30239E+06

4.45390E+06

4.60541E+06

4.75692E+06

Stanton Number
Grid 1

0.002916

0.002234

0.001954
0.001688

0.001574

0.001465

0.001356

0.001261

0.001221

0.001166

0.001124

0.001103

0.001055
0.001097

0.001129

0.001377

0.001734

0.001982

0.002159

0.002234

0.002192

0.002089

0.002056

0.002016
0.001989

0.001962

0.001936

0.001923

0.001962
0.001883

0.001873

0.001860

0.001832

0.001822

0,001776

0.001781

0.001760

0.001749
0.001719

0.001694

0.001719

0.001723

0.001703

0.001706

0.001693

0.001703

0.001645

0.001665

Stanton Number

Grid 2

0.002962
0.002321

0.002060
0.001811

0.001650

0.001596

0.001533
0.001583

0.001583

0.001723
0.001803

0.002096

0.002349
0.002501

0.002444

0.002415

0.002321

0.002241

0.002240

0.002207

0.002136

0.002040
0.002051

0.002001

0.001967

0.001955

0.001921
0.001967

0.001905

0.001873

0.001865

0.001814

0.001813

0.001770

0.001761

0.001739

0.001741
0.001713

0.001711

0.001723

0.001718

0.001713

0.001723

0.001698

0.001705

0.001674

0.001650

Stanton Number

Grid 3

0.004]05

0.003316

0.003251

0.003155
0.003207

0.003130

0.003054

0.003007

0.003007

0.002984

0.002917

0.002790

0.002848
0.002790

0.002751

0.002549

0.002544

0.002484

0.002390

0.O02391

0.002350

0.002278

0.002216

0.002177
0.002183

0.002092

0.002074

0.002052

0.002134
0.002045
0.002038
0.001989
0.001936
0.001953

0.001930

0.001918

0.001910

0.001885

0.001868
0.001849

0.001868

0.001874

0.001874

0.001881
0.001850

0.001827

0.001793

0.001791
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Section 4,3 numerical simulation parameters (zero pressure m'adient):

Ue = 30.3m/s Tw = Te = 294.7K

Pe = lalan _ = 295K

al = 1.0 Ee.i = 0.01 m2/s3

integration step size = 0.25_i

Starting locations:

for Tue = 2.0%: ke,i = 0.551 m2/s 2 and Rex.i = 25

Appendix C numerical simulations for Daniels f19781 Turbine Blade:

Mf = 0.35

pf = 0.292 MPa

integration step size =

T_ = 432 K

Tf = 423 K

Tw = 289 K

0.25_i

Table D.2 contains the x and y coordinates and experimental freestream

pressure distribution for the suction surface of Daniels [ 1978] turbine

blade (design Reynolds number case). The x and y coordinates are

used to determine the turbine blade geometry and resulting wetted

surface distance, called s, while the freestream pressure distribution is

used to calculate the freestream velocity boundary conditions.
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Table D.2. Experimental x and y Coordinates and Freestream Pressure
Distribution for the Suction Surface of Daniels' [1978]

Turbine Blade

x Ira)
0.00070
0.00021

0.00163

0.00347
0.00531

0.00714

0,00898

0.01082

0.01265

0.01449

0.01633

0.01816

0.02000

0.02184

0.02301

0.02367

0.02735

0.02919

0.03102

0.03286

0.03470

0.03653

Y_m /
0.032640
0.033561

0,036909

0.038693
0.039692

0,040228

0,040383

0.040187

0.039667

0.038807

0.037538

0.035857
0.033829

0.031472

0.028736

0.025685

0.022444

0.018998

0.015314

0.011348

0.007042

0.002307

Frees_e_ll

Pressure _Pa_
2.92000e+5

2.78250e+5

2.18360e+5

1.82290e+5
1.80570e+5

1.82010e+5

1,85700e+5
1.84550e+5

1.76740e+5

1.72950e+5
1.65500e+5

1.59340e+5
1.54580e+5
1.48680e+5

1.44030e+5

1.44660e+5

1.53860e+5

1.55520e+5

1.45880e+5

1.44790e+5

1.33720e+5

1.47770e+5
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